Safety information and use notice points 1

In order to ensure the safety of your personal and equipment, before using the inverter, please read this chapter of contents conscientiously.

1.1 Safety precautions

There are three kinds of safe relevant warnings in this service manual, they are as follows:

This symbol is briefed on some useful information.

This symbol briefs on: If does not operate on request, may make the body warning injured or the equipment damaged.

This symbol briefs on: If does not operate on request, may cause death, danger severely injured or serious property loss.

- (1) Forbid to connect U, V, W output end to AC power supply, otherwise cause the complete damage of the inverter.
- (2) Don't make P- and P + short-circuited, otherwise cause the inverter to be damaged.
- (3) The inverter is forbidden to install on the flammables, otherwise have danger of fire.
- (4) Don't install it in the environment with explosive gas, otherwise have danger of causing explosion.

(6) If being connected to the power supply, don't operate the inverter with moist hands, otherwise have danger of getting an electric shock.

(5) After connecting main loop, should carry on insulating treatment to bare wiring end,

(7) The ground terminal of the inverter must be grounded well.

otherwise have danger of getting an electric shock.

- (8) Inverter being connected to power supply, please don't open cover and carry on wiring, can connect the wire or check only after closing power for10 minutes.
- (9) Only qualified personnel may carry on wiring and forbid leaving over any conductive thing in machine, otherwise have danger of getting an electric shock or causing damage of the inverter.
- (10) Inverter stored for over 2 years, should be stepped up gradually with voltage regulator first while having the electricity, otherwise have danger of getting electric shock and explosion

- It is prohibited that connect AC220V signal to control ends except TA, TB, TC, otherwise have danger of damaging property.
- (2) If the inverter is damaged or without all parts, please don't install and operate it, otherwise have danger of fire or cause personnel to be injured.
- (3) When installing, should choose a place where can endure the inverter, otherwise have danger of injuring personnel or damaging property while falling down.

1.2 Use range

- (1) This inverter is only suitable for three phases AC asynchronous motor in general industrial field.
- (2) While applying inverter to such equipments that relate much to the life, great property, safety devices etc., must handle cautiously, and consult with producer, please.
- (3) This inverter belongs to the control device of general industrial motor, if used in dangerous equipment, must consider the security safeguard procedures when the inverter breaks down.

1.3 Use notice points

- EDS2000 series inverter is voltage-type inverter, so temperature, noise and vibration slightly increasing compared to power source running when using, belongs to normal phenomenon.
- (2) If need to run for a long time with constant torque of low-speed, must select motor of frequency conversion for use. Use general asynchronous AC motor when running at a low speed, should control temperature of the motor or carry on heat dissipation measure forcedly, so as not to burn the generator.
- (3) Such mechanical device needing lubricating as the gearbox and gear wheel, etc., after running at a low speed for a long time, may be damaged as lubrication result become poor, please take necessary measure in advance.
- (4) When the motor running with frequency above specified, besides considering the vibration, noise increase of the motor, must also confirm speed range of the motor bearing and the mechanical device.
- (5) For hoist and great inertia load, etc., the inverter would shut off frequently due
- 2

to over-current or over-voltage failure, in order to guarantee normal work, should consider choosing proper brake package.

- (6) Should switch on/off the inverter through terminal or other normal order channels. It is prohibited that switch on/off the inverter frequently by using strong electric switch such as magnetic control conductor, otherwise will cause the equipment to be damaged.
- (7) If need to install such switch as the magnetic control conductor, etc. between inverter output and the motor, please guarantee the inverter is switched on/off without output, otherwise may damage the inverter.
- (8) The inverter may meet with mechanical resonance of the load within certain range of frequency output, can set up jumping frequency to evade.
- (9) Before using, should confirm the voltage of the power is within the working voltage range allowed, otherwise should vary voltage or order special inverter.
- (10) In the condition of altitude above 1000 meters, should use the inverter in lower volume, reduce output current by 10% of specified current after each 1500 meters height increasing.
- (11) Should make insulation check to the motor before using it for the first time or after a long time placement. Please inspect with 500V voltage-type megohm meter according to method shown as graph 1-1 and insulation resistance should not be smaller than 5 M Ω , otherwise inverter may be damaged.
- (12) To forbid assembling capacitor for improving power factor or lightningproof voltage-sensible resistance etc., otherwise will cause malfunction trip of the inverter or damage of the parts, shown as graph 1-2.

EDS2000/EDS2800/EDS2860 series inverter service manual

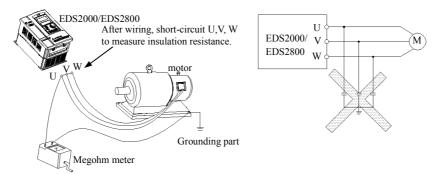


Fig.1-1 motor insulation measure Fig.1-2 capacitor at output side forbidden

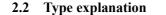
1.4 Scrap notice points

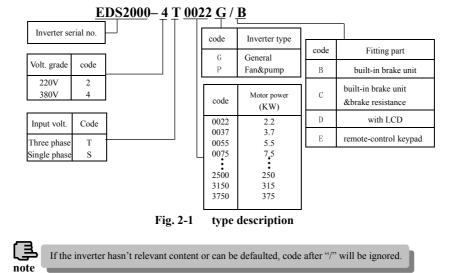
4

When disposing scrap inverter and its parts, please note:

- (1) The unit: please discard as industrial useless.
- (2) Electrolytic capacitor: when burning the inverter electrolytic capacitor in it may explode.
- (3) Plastic: when plastic, rubber parts etc. in the inverter are burning, they may bring bad, poisonous gas, so please be ready tosafeguards .

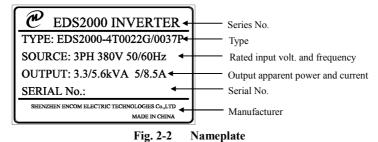
2 Type and specification of the inverter


2.1 Incoming inverter inspect


 Check if there is damage during transportation and inverter itself has damage or fall-off parts.

(2) Check if parts presented in packing list are all ready.

(3) Please confirm rated data of the inverter is in line with your order requirement.


Our product is guaranteed by strict quality system during manufacturing, packing, transportation etc., please contact our company or local agent rapidly if some careless omission or mistake arise, we'll deal with it as soon as possible.

2.3 Nameplate explanation

Nameplate presented as figure 2-2 with type and rating data at the bottom of inverter right side.

Fig. 2-2

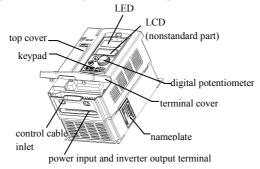

2.4 Series type explanation

Table 2-1 series type explanation

(G: general with consta	Rated power (KVA)	Rated output current (A)	Adapte d motor (K)		
EDS2000-4T0022G/C			3. 3	5.0	2.2
EDS2000-4T0037G/C	EDS2000-4T0037P/C		5.6	8.5	3.7
EDS2000-4T0055G/C	EDS2000-4T0055P/C		8.6	13	5.5
EDS2000-4T0075G/C	EDS2000-4T0075P/C		11	17	7.5
EDS2000-4T0110G/B	EDS2000-4T0110P/C	EDS2800-4T0110	17	25	11
EDS2000-4T0150G/B	EDS2000-4T0150P/B	EDS2800-4T0150	21.7	33	15
EDS2000-4T0185G	EDS2000-4T0185P/B	EDS2800-4T0185	25.7	39	18.5
EDS2000-4T0220G	EDS2000-4T0220P	EDS2800-4T0220	29.6	45	22
EDS2000-4T0300G	EDS2000-4T0300P	EDS2800-4T0300	39.5	60	30
EDS2000-4T0370G	EDS2000-4T0370P	EDS2800-4T0370	49.4	75	37
EDS2000-4T0450G	EDS2000-4T0450P	EDS2800-4T0450	60	91	45
EDS2000-4T0550G	EDS2000-4T0550P	EDS2800-4T0550	73.7	112	55
EDS2000-4T0750G	EDS2000-4T0750P	EDS2800-4T0750	99	150	75
EDS2000-4T0900G	EDS2000-4T0900P		116	176	90
EDS2000-4T1100G	EDS2000-4T1100P		138	210	110
EDS2000-4T1320G	EDS2000-4T1320P		167	253	132
EDS2000-4T1600G	EDS2000-4T1600P		200	304	160
EDS2000-4T2000G	EDS2000-4T2000P		250	380	200
EDS2000-4T2200G	EDS2000-4T2200P		280	426	220
EDS2000-4T2500G	EDS2000-4T2500P		318	474	250
EDS2000-4T2800G	EDS2000-4T2800P		342	520	280
EDS2000-4T3150G	EDS2000-4T3150P		390	600	315

EDS2000-4T3500G	EDS2000-4T3500P	430	650	350
EDS2000-4T3750G	EDS2000-4T3750P	 493	750	375
EDS2000-4T4000G	EDS2000-4T4000G	 493	750	400

2.5 Appearance and parts name explanation

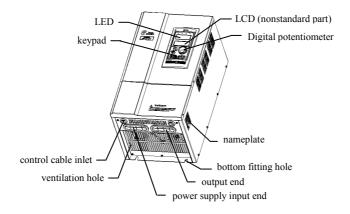
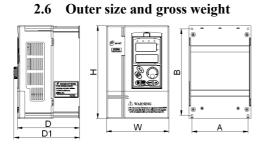



Fig. 2-3 Parts name sketch

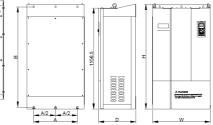


Fig.a EDS2000-4T0022G/C~EDS2000-4T0110P/C outer dimension

Fig.c EDS2000-4T1600G ~EDS2000 4T3150P outer dimension

Fig.b EDS2000-4T0110G/B ~EDS2000-4T1600P EDS2800-4T0110~ EDS2800-4T0550 outer

Fig.d EDS2000-4T2000G/PA outer dimension

Fig.2-4 outer dimension

				0						
Inverter type (G:general;P:spe		A (mm)	B (mm)	W (mm)	H (mm)	D (mm)		Fixing aperture (mm)	Gross weight (kg)	Fig
EDS2000-4T0022G/4T0037P		140	215	155	230	155	164	5	3.5	а
EDS2000-4T0037G/4T0055P		140	215	155	230	155	104	5	5.5	a
EDS2000-4T0055G/4T0075P		185	275	200	290	178	187	6	6.1	
EDS2000-4T0075G/4T0110P		185	275	200	290	1/8	18/	0	0.1	а
EDS2000-4T0110G/4T0150P	EDS2800-4T0110	140	350	230	370	212	223	7	14.5	b
EDS2000-4T0150G/4T0185P	ED32800-410110	140	330	230	370	212	223	/	14.5	U
EDS2000-4T0185G/4T0220P	EDS2800-4T0150									
	EDS2800-4T0185	180	440	260	460	252	261	9	18.5	b
EDS2000-4T0220G/4T0300P	EDS2800-4T0220									
EDS2000-4T0300G/4T0370P	EDS2800-4T0300	200	515	300	535	252	261	9	25.5	b
EDS2000-4T0370G4T0450P	EDS2800-4T0370	200	515	300	555	232	201	9	26	υ

Table 2-2 mounting size

EDS2000-4T0450G/4T0550P	EDS2800-4T0450									
EDS2000-4T0550G/4T0750P	EDS2800-4T0550	250	620	370	645	258	267	12	50	b
EDS2000-4T0750G/4T0900P										
EDS2000-4T0900G/4T1100P		300	650	480	680	360	369	12	70	b
EDS2000-4T1100G/4T1320P		400	720	480	750	372	381	12	80	1
EDS2000-4T1320G/4T1600P		400	/20	480	/50	312	381	12	80	b
EDS2000-4T1600G/PA				480	770	410		12	109	b
EDS2000-4T2000G/PA		420	1157	560	1200	430		14	140	d
EDS2000-4T2200G/PA				560	1200	430	_			
EDS2000-4T2500G/PA		500	1157	660	1200	430		14	150	d
EDS2000-4T2800G/PA				000	1200	450	_			
EDS2000-4T1600G/4T2000P		—	—	600	1500	500		_	160	с
EDS2000-4T2000G/4T2200P		—		(00	1600	500			160	
EDS2000-4T2200G/4T2500P				600	1600	500	_	_	180	с
EDS2000-4T2500G/4T2800P										
EDS2000-4T2800G/4T3150P				700	1.000	500			100	
EDS2000-4T3150G/4T3500P		—	_	700	1600	500		_	180	с
EDS2000-4T3500G/4T3750P		1								
EDS2000-4T3750G/4T4000P				000	1900	600			220	
EDS2000-4T4000G		-	_	900	1800	600		_	230	с

2.7 Outer size of keypad and its fixing box (unit: mm)

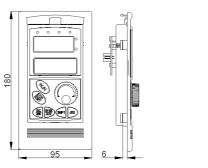
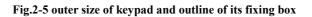



Fig.a EN-KB1 keypad

Fig.b keypad fitting box

2.8 Product technic index and spec

		iten	n	Item description		
T .	R	ating	g volt., frequency	3 phase 380V; 50Hz/60Hz		
Input	All	owe	d work volt. range	Volt.: 320V~460V		
			Voltage	0-380V		
			Frequency	0Hz-400Hz		
output	Over loading capacity		loading capacity	G type: 150% of rated current for 1 minute, 200% of rated current for 0.5s; P type: 3.7KW~132KW: 120% of rated current fo 1 minute; 160KW above: 110% of rated current for 1 minute, 150% of rated current for 1s EDS2800 type: 150% of rated current for 3 minutes, 200% of rated current for 5s		
		С	ontrol mode	optimized space volt. vector PWM control mode for EDS2000; simple current vector control mode for EDS2800 series		
	S	peed	regulation range	1: 100		
	Start-up torque		art-up torque	150% of rating torque at 3 Hz frequency for EDS2000 series; 130% of rated torque at 1Hz frequency for EDS2800 series		
	Running speed stable state precision			$\leqslant \pm 0.5\%$ of rating synchronous speed		
	Frequency precision			Digital setting: max. frequency $\times \pm 0.01\%$; analog setting: max.frequency $\times \pm 0.2\%$		
			Analog setting	0.1% of max. frequency		
	Freque	encv	Digital setting	0.01Hz		
Control	resolu		Exterior impulse	0.1% of max. frequency		
performance			Keypad digital setting	0.01Hz		
	Torque boost		orque boost	Automatic torque boost, manual torque boost 0.1%~20.0%		
	V/F curve (volt. frequency characteristic)			Set rating frequency randomly at range of 5~400Hz, can choose constant torque, degressive torque 1, degressive torque 2, degressive torque 3, user defined V/F curve in total 5 kinds of curve		
	Accelerating decelerating curve		ng decelerating curve	3 modes: straight line accelerating decelerating, S curve accelerating decelerating and automatic accelerating decelerating mode; 4 kinds of accelerating decelerating time (unit minute/second can be optioned), max. time 6000 minutes.		
		Pow	verconsumption brake	Interior or exterior brake resistance		
	brake DC brake		DC brake	Optional start-up and stop, action frequency $0\sim15$ Hz, action volt. $0\sim15\%$, action time $0\sim20.0$ s		

Running functionmethodRunning functionpulse output channelImpulse square wave signal output of 0-50KHz, can realize output of physical parameter such as setting frequency, output frequency etc.Analog output channel2 channel of analog signal output, optional 4-20mA or 0-10V separately, can realize output of physical parameter such as setting frequency, output frequency etc.Special channel for EDS2800Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signalkeypadLED displayCan display setting frequency, output frequency, output voltage, output current etc. in total 20 kinds of parameterkeypadLCD displayoptional, operation is noted by EnglishParameter copyUse keypad and remote-control keypad to copy the parameter speedilyLock the buttonLock all the buttonOver-current protection, over-voltage protection, lack-voltage protection, over-load protection, missing phase protection, over-load protection, missing phase protection (in option)etc.ambientUse ambientindoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.						
Interior PID controller Be convenient to make closed-loop system Automatic energy save running Optimize V/F curve automatically based on the load to realize power save running Automatic volt, regulation (AVR) Can keep constant output volt. When power source voltage varies. Automatic current limiting Limit running current automatically to avoid frequent over-current which will cause trip Running order specified channel Digital provision, analog provision, impulse Provision, can be switched at any time by kinds of method Running function pulse output channel Digital provision, analog provision, impulse Provision, can be switched at any time by kinds of method Analog output channel Impulse square wave signal output of 0–50KHz. can realize output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0–1A and 2 channel of 0–10V saparately, can realize output of physical parameter such as setting frequency, output frequency, output frequency, output frequency, output voltage, output voltage protection, lack-voltage protection, over-load protection, over-load protection, nover-load protection, missing phase protection, lack-voltage protection, prover-load protection, prover-load protection, nover-load protection, nover-load protection, nover, no water drop or salt etc.		Jog				
Automatic energy save running Optimize V/F curve automatically based on the load to realize power save running Automatic volt, regulation (AVR) Can keep constant output volt. When power source voltage varies. Automatic current limiting Can keep constant output volt. When power source voltage varies. Automatic current limiting Limit running current automatically to avoid frequent over-current which will cause trip Running order specified channel Key pad specified, control terminal specified, serial port specified Running frequency specified channel Digital provision, analog provision, impulse Provision, can be switched at any time by kinds of method Running function pulse output channel Impulse square wave signal output of 0-50KHz, can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel Can display setting frequency, output of physical parameter such as setting frequency, output voltage specified voltage and remote-control keypad to copy the parameter such as setting frequency. keypad LCD display Optional. operation is noted by English Vse keypad and remote-control keypad to copy the parameter scopy Lock the button Lock all the button Ver-current protection, over-voltage protection, lack-voltage protection		Multisection speed running	Realized by interior PLC or control terminal			
Automatic energy save running Automatic volt, regulation (AVR) Can keep constant output volt. When power source voltage varies. Automatic current limiting Limit running current automatically to avoid frequent over-current which will cause trip Running order specified channel Key pad specified, control terminal specified, serial port specified Running frequency specified channel Digital provision, analog provision, impulse Provision, can be switched at any time by kinds of method pulse output channel Impulse square wave signal output of 0~50KHz, can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel 2 channel of analog signal output, optional 4~20mA or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signal LED display Qat on splay setting frequency, output frequency, output current etc. in total 20 kinds of parameter keypad LCD display Optional, operation is noted by English Vack the button Lock the button Cover-current protection, over-voltage protection, lack-voltage protection, over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, missing phase protection, over-load protection, missing phase protection, indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no		Interior PID controller	Be convenient to make closed-loop system			
(AVR) voltage varies. Automatic current limiting Limit running current automatically to avoid frequent over-current which will cause trip Running order specified channel Key pad specified, control terminal specified, serial port specified Running frequency specified channel Digital provision, analog provision, impulse Provision, can be switched at any time by kinds of method Running function pulse output channel Impulse square wave signal output of 0~50KHz, can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel Impulse square wave signal output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Can analog signal output of 0~1A and 2 channel of 0~10V separately. can realize output of physical parameter such as setting frequency, output frequency, output frequency, output frequency, output frequency, output of 0~10V analog input signal keypad LED display Can display setting frequency, output frequency, output frequency, output optional - 20m kinds of parameter keypad LCD display optional. operation is noted by English keypad LCD display optional. operation is noted by English Varameter copy Data keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Vov		Automatic energy save running	1 5			
Automatic current limiting frequent over-current which will cause trip Running order specified channel Key pad specified, control terminal specified, serial port specified Running frequency specified channel Digital provision, analog provision, combined Running function pulse output channel Impulse square wave signal output of 0~50KHz, can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel 2 channel of analog signal output, optional 4~20mA or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency, output frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signal keypad LED display Can display setting frequency, output frequency, output frequency, output voltage, output voltage, output voltage, output voltage protection, iack-voltage protection, over-voltage protection, lack-voltage protection, missing phase protection, lack-voltage protection, missing phase protection, in option), lack-voltage protection, missing phase protection (in option), each, one transition Protection function LCD keypad, brake subassembly, remote-control keypad etc. ambient Use ambient Indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no		÷	voltage varies.			
Running order specified port specified Running frequency specified channel Digital provision, analog provision, impulse Provision, can be switched at any time by kinds of method Running function pulse output channel Impulse square wave signal output of 0~50KHz. can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel 2 channel of analog signal output, optional 4~20mA or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signal LED display Can display setting frequency, output frequency, output voltage, output current etc. in total 20 kinds of parameter keypad LCD display Optional, operation is noted by English Parameter copy Use keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Over-current protection, over-heat protection, over-load protection, missing phase protection, over-load protection, missing phase protection, indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.		Automatic current limiting	frequent over-current which will cause trip			
Running function Running frequency specified channel Provision, serial port provision, combined Provision, can be switched at any time by kinds of method Running function pulse output channel Impulse square wave signal output of 0~50KHz, can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel 2 channel of analog signal output, optional 4~20mA or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signal LED display Can display setting frequency, output frequency, output voltage, output current etc. in total 20 kinds of parameter keypad LCD display Optional, operation is noted by English Vere-current protection, over-voltage protection, lack-voltage protection, over-voltage protection, lack-voltage protection, over-leat protection, over-load protection, missing phase protection, lack-voltage protection, missing phase protection (in option)etc. LCD keypad, brake subassembly, remote-control keypad, connecting cable for remote-control keypad etc. Indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.		Running order specified channel				
Kuining function pulse output channel can realize output of physical parameter such as setting frequency, output frequency etc. Analog output channel 2 channel of analog signal output, optional 4~20mA or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signal keypad LED display Can display setting frequency, output frequency, output voltage, output current etc. in total 20 kinds of parameter Parameter copy Use keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Over-current protection, over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, missing phase protection, in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad, connecting cable for remote-control keypad etc. ambient Use ambient indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.			Provision, serial port provision, combined Provision, can be switched at any time by kinds of			
Analog output channel or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency etc. Special channel for EDS2800 Inter-insulated 2 channel of 0~1A and 2 channel of 0~10V analog input signal LED display Can display setting frequency, output frequency, output voltage, output voltage, output current etc. in total 20 kinds of parameter keypad LCD display optional, operation is noted by English Parameter copy Use keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Protection function Over-current protection, over-voltage protection, lack-voltage protection, over-leat protection, over-load protection, missing phase protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad etc. ambient Use ambient indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.		pulse output channel	can realize output of physical parameter such			
Special channel for EDS2800 0~10V analog input signal LED display Can display setting frequency, output frequency, output voltage, output voltage, output current etc. in total 20 kinds of parameter keypad LCD display optional, operation is noted by English Parameter copy Use keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Protection function Over-current protection, over-voltage protection, lack-voltage protection, over-leat protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad etc. ambient Use ambient indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.		Analog output channel	or 0~10V separately, can realize output of physical parameter such as setting frequency, output frequency etc.			
LED display output voltage, output current etc. in total 20 kinds of parameter keypad LCD display optional, operation is noted by English Parameter copy Use keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Protection function Over-current protection, over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, missing phase protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad etc. ambient Use ambient indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.		Special channel for EDS2800				
Parameter copy Use keypad and remote-control keypad to copy the parameter speedily Lock the button Lock all the button Protection function Over-current protection, over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, missing phase protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad etc. use ambient Use ambient		LED display	output voltage, output current etc. in total 20 kinds			
Parameter copy parameter speedily Lock the button Lock all the button Protection function Over-current protection, over-voltage protection, over-heat protection, over-load protection, over-heat protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad etc. use ambient Use ambient	keypad	LCD display	optional, operation is noted by English			
Protection function Over-current protection, over-voltage protection, lack-voltage protection, over-heat protection, over-load protection, missing phase protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad, connecting cable for remote-control keypad etc. ambient Use ambient use ambient water drop or salt etc.		Parameter copy	51 51 15			
Protection function lack-voltage protection, over-heat protection, over-heat protection, over-load protection, missing phase protection (in option)etc. Fitting parts LCD keypad, brake subassembly, remote-control keypad, connecting cable for remote-control keypad etc. ambient Use ambient use ambient water drop or salt etc.		Lock the button	Lock all the button			
Fitting parts keypad, connecting cable for remote-control keypad etc. ambient indoor, not bare to sunlight, no dust, no corrosive gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.	Protection function		lack-voltage protection, over-heat protection, over-load protection, missing phase protection (in			
ambient Use ambient gas, no flammable gas, no oil fog, no vapor, no water drop or salt etc.		Fitting parts	keypad, connecting cable for remote-control keypad etc.			
altitude Lower than 1000m	ambient	Use ambient	gas, no flammable gas, no oil fog, no vapor, no			
		altitude	Lower than 1000m			

	Ambient temperature	-10°C~+40°C(under ambient temperature 40°C ~50°C, please reduce the volume or strengthen heat sink)			
	Ambient humidity	Smaller than 95%RH, no condensation water			
	Smaller than 5.9m/s ² (0.6g)				
	Storage temperature	-40°C~+70°C			
configuration	Defending grade	IP20			
vonngaration	Cooling mode	By fan with automatic temperature control			
Mounting mode		Wall hanging for type of 132kwG/160kWP and below, cabinet standing for type of 160kwG/200kwP and above, wall hangning for a EDS2800 types.			

To exert excellent performance of this inverter, please choose correct type and check relevant content according to this chapter before wiring for use.

12

Must choose correct type, otherwise may cause abnormal running of the motor or damage of the inverter.

3 Installation and wiring

3.1 Installation ambient

3.1.1 Demand for installation ambient

(1) Installed in drafty indoor place, ambient temperature within -10 C~40°C, need external compulsory heat sink or reduce the volume if temperature exceeds 40°C.
(2) Avoid installing in place with direct sunlight, much dust, floating fibre and metal powder.

(3) Forbid to install in place with corrosive, explosible gas.

(4) Humidity should be smaller than 95%RH, without condensation water.

(5) Installed in place of plane fixing vibration smaller than $5.9 \text{m/s}^2(0.6\text{g})$.

(6) Keep away from electromagnetic disturbance source and other electronic apparatus sensible to electromagnetic disturbance.

3.1.2 Installation direction and space

(1) Normally the inverter should be mounted vertically, horizontal mounting will seriously affect heat dissipation and the inverter must be used in lower volume.(2) Demand for minimum mounting space and distance, please see Fig.3-1.

(3) When install multiple inverters up and down, must apply leading divider

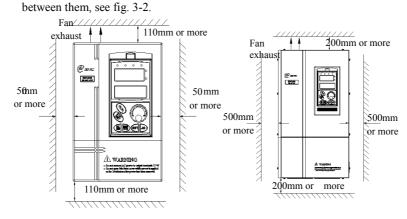


Fig. 3-1 mounting space

Fig. 3-2 mounting of multiple inverters

3.2 Parts disassembly and installation

3.2.1 Key board disassembly and installation

(1) disassembly

Let the forefinger press finger inlet on the keypad, depress fixing flexible plate on the top lightly, draw it outward, then you can disassemble the keypad.

(2) assembly

First place the fixing hook at the bottom of keypad onto mounting claw on keypad mounting hole, let forefinger press fixing flexible plate on top of keypad and then push it inside, release it in proper location(after a crisp sound), see fig. 3-3.

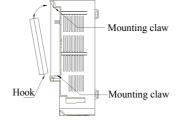


Fig.3-3 mounting sketch of keypad

3.2.2 Cover disassembly and installation

3.2.2.1 Plastic cover disassembly and installation

(1) disassembly

Put the finger into handle hole on the bottom of cover, lift it in force, till buckle between cover and unit body off, draw the cover backward, then you can disassemble the cover.

- (2) assembly
 - 1> tilt the cover for $5\sim10$ degree;
 - 2> put the mounting claw into relevant hole on the unit body and then press downward in force, see Fig. 3-4.

3.2.2.2 Disassembly and assembly for metal cover

(1) Disassembly:

First take off 2 screws at sides of the cover and move it a bit outward horizontally, then tilt it at 15 degree and draw it outward at direction shown in right figure, now you can take the cover off.

(2) Assembly:

First put down the cover in parallel with unit body and make it just locked at 2 sides of the inverter, secondly force it ahead and make fixing part on its top inserted into fixing slot of unit body, at last screw the cover and finish assembly for the cover. As shown in Fig.3-5.

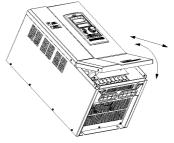


Fig. 3-4 disassembly and mounting sketch of plastic cover

Fig. 3-5 disassembly and assembly for metal cover

3.3 wiring notice points

- (1) Assure power cut off completely for above 10 minutes before wiring, otherwise have danger of getting electric shock.
- (2) Forbid connecting power wire to output U, V, W of the inverter.
- (3) There is current leakage in the inverter and leak current of middle/high power inverter is bigger than 5mA, for safety reason, inverter and motor must be earthed safely, commonly use 3.5mm² above copper wire as ground wire and ground resistance smaller than 10 Ω.

- (4) Before shipment compression resistance test of the inverter is passed, so user should not conduct compression resistance test again.
- (5) Should not assemble electromagnetic contactor and absorbing capacitance or other absorbing device, see fig. 3-5.
- (6) To be convenient to over current protect of input side and power off maintenance inverter should be connected to power supply through relay.
- (7) Connecting wire for relay input and output loop(X1 X8, Y1, Y2, FWD, REV), should use above 0.75mm² glued wire or shielding wire, one shielding layer end hung in the air,the other connected to grounding end PE, connecting wire shorter than 50m.
- (1)Before wiring, assure power supply is cut off completely for 10 minutes and all LED indicator light extinguished.
- (2)Before internal wiring, confirm that DC volt. Between main loop end P+ and P- fall down to below DC36V.
- (3)Wiring can only be done by professional person trained and qualified.
- (4)Before electrification, check if voltage grade of the inverter is in line with that of power supply volt., otherwise will cause personnel injured and device damaged.

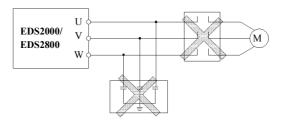
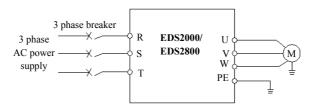



Fig.3-6 banned magnetic control conductor and absorbing capacitance between inverter and motor

- 3.4 Main loop terminal wiring
- 16

Ν

3.4.1 Connection between inverter and fitting parts

1) Must assemble disjunction R S device such as isolation switch etc. T (1) Must assemble disjunction between powersource and the inverter to assure personal safety when repairing the inverter and

needing compulsory power off. (2) Power supply loop must have

breaker or fuse with over current protectionfunction to avoid

malfunction expandingcaused by failure of after device.

(3) AC input reactor

If high-order harmonics between inverter and power supply is biggish which can't fulfil system requirement, or need to improve input side power factor, AC input reactor is needed. (4) Magnetic control conductor only be

applied to power supply control and don't apply magnetic control conductor to controlling on/off of

the inverter. (5) Input side EMI filter Can use EMI filter to inhibit

high-frequency conduction disturbance and emission

disturbance from inverter power

Isolation switch Breaker or fuse AC input reactor(in option) Magnetic control conductor Input EMI filter(in option) Řšt EDS2000/ EDS2800 Brake unit (in option) PEUVW Output EMI filter (in option) AC output reactor(in option)

Fig.3-8 the connection betweem the inverter and fittings parts

supply wire.

(6) DC reactor

Built-in DC reactor as standard configuration for EDS2000-4T1600G/4T2000P and type of higher power, put-outside DC reactor as fitting part for type of power lower than EDS2000-4T11600G/EDS2000-4T1600P. To avoid effect tothe inverter from power supply and to protect the inverter and to inhibit high order harmonic, should deploy DC reactor under following situations.

① When there is on-off blind power compensation capacitor or controlled silicon phase control load at the same power supply for the inverter, it's possible to damage input rectifying circuit of the inverter because on/off switching of capacitor may causesudden change of power network voltage and phase control load cause harmonic and power network wave-form aberration.

② When unbalance degree of 3 phase power supply for the inverter exceeds 3%.

③ When input side power factor of the inverter is required to reach above 0.9.

④ Under normal situation, DC reactor is needed for the inverter when

capacitance of power supply is larger than 10 times of inverter capacitance. (7) Output side EMI filter

Can use EMI filter to inhibit emission disturbance noise and wire leakage current from output side.

(8) AC output reactor

Advise assembling AC output reactor to avoid motor insulation damage, too large over current and inverter frequent protection when connecting wire from inverter to motor exceeds 50m.But voltage drop of AC output reactor must be considered. Improve input output voltage of the inverter or let the motor in lower volume to avoid burning off the motor.

(9) Complete ground wire

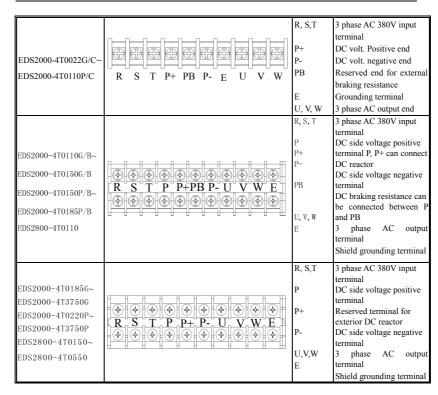
Inverter and motor must be earthed and grounding resistor smaller than 10 Grounding wire should be shorter enough and wire diameter be bigger

enough(not smaller than following standard):

7.5KW or below motor: 3.5mm² above copper wire

11~15KW motor: 8mm² above copper wire

18.5~37KW motor: 14mm² above copper wire


45~55KW motor: 22mm² above copper wire 75KW and above motor: 38mm² above copper wire

3.4.2 Main loop terminal wiring

For main loop input output terminal, see table 3-1.

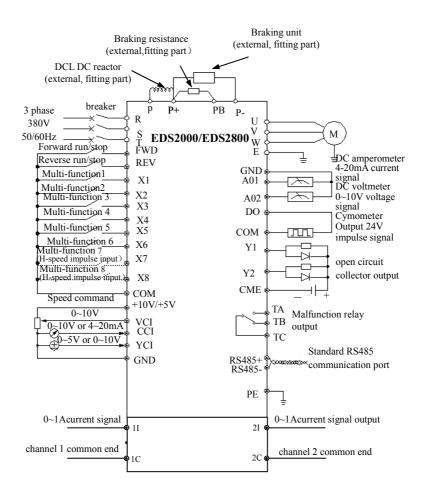
Table 3-1 main loop input output terminal description

Adapted type	Main loop terminal	Terminal name	Function description
--------------	--------------------	------------------	----------------------

(1) Can connect braking unit between P+ and P- externally if necessary.

(2) Can connect DC braking resistor between PB and P+ externally if necessary.

(3) DC ractor can be connected between P and P+ if necessary.


(4) P and P+ must be short-circuited before shipment, otherwise the inverter can't work.

3.5 Basic running wiring diagram

E

note

Adapted type: EDS2000-4T0022G/B~EDS2000-4T3750G EDS2000-4T0022P/B~EDS2000-4T3150P EDS2800-4T0110~EDS2800-4T0550

3.6 Control loop collocation and wiring

3.6.1 Location&function of terminal and jump-wire:

For location of terminal and jumping-wire switch on the CPU board, please see Fig.3-9.

Function description of terminal provided for the user, please see Table 3-2, function and setup description of jumping-wire switch, please see Table 3-3, terminal CN1, CN2 and CN4 are for manufacturer's use. Should carry on terminal wiring correctly and set all jumping-wire switch on the CPU board before using the inverter, to use 1mm² above conducting wire as terminal connecting wire is

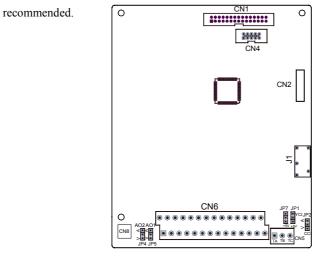
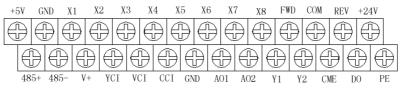


Fig. 3-10 jumping-wire switch on CPU board

Table 3-2 function description of terminal provided for user

symbol	function	Description
CN3	RS485 communication port	Remote-control keypad and upper machine control connection port
CN5	Malfunction relay signal output	Always-open connect pin of the relay closed when malfunction in inverter occurs
CN6	External terminal input output control	Use this port when external terminal control inverter running
CN8	Special channel for injection molding machine	Special input channel for EDS2800 series


Table 3-3 function description of jumping-wire switch provided for user

symbol	function	setting	factory default
1 1 1 1	YCI 5V/10V voltage input mode selection	5V: 0-5V voltage signal; 10V: 0-10V voltage signal	0-5V

JP2	CCI current/voltage input mode selection	A: 0/4~20mA current signal; V: 0~10V voltage signal	0~10V
JP4 JP5	terminal AO1, A02 output	A: 4-20mA: AO1,AO2 terminal output current signal V: 0~10V: AO1, AO2 terminal output voltage signal	0~10V

3.6.2 Explanation for control CPU board

(1) control loop terminal CN6 arranged as follows:

(2) CN6 terminal function description as Table 3-4.

Table 3-4 CPU board CN6 terminal function table	Table 3-4	3-4 CPU boar	d CN6 termina	l function table
---	-----------	--------------	---------------	------------------

item	symbol	name	Function description	Spec
run command	FWD REV	Forward run command Reverse run command	Forward reverse run command, see F5.08 group double-wire and three-wire control function description	Optocoupler isolation input Input impedance: R=2K Ω Max. input frequency: 200Hz
Multi-function input terminal	X1 X2 X3 X4 X5 X6 X7 X8	Multi-function input 1 Multi-function input 2 Multi-function input 3 Multi-function input 4 Multi-function input 5 Multi-function input 6 Multi-function input 7 Multi-function input 8	Used for multi-function input terminal, for detailed see Chapter 6 Section 6.6 terminal function parameter(F5 group)input end function description. X7, X8 can be set as H-speed pulse input port, for detailed see Chapter 6 Section 6.6 terminal function parameter (F5 group) input end function description. (common end: COM)	X1~X8 FWD, REV COM Input impedance of X7, X8 input channel:R=2K Ω Max. output Freq.: 50KHz Input voltage range:15~24V
Power supply	+24V	+24V power supply	Provide +24V power supply. (negative pole: COM)	Max. output current:150mA
	+10V/+5V COM	+10V/+5V power supply Common end+24V power supply negative pole	Provide +10V/+5V power supply. (negative pole: GND) Common end and reference ground of digital signal input	Max. output current:50mA Internal one another isolating among CME,
	GND	+10V power supply negative pole	Reference ground of analog signal and +10V power supply	COM and GND

EDS2000/EDS2800/EDS2860 series inverter service manual

	CME	Y1, Y2output common end	Common end of multi-function output terminal Y1, Y2	
Analog value input	ССІ	Analog value input CCI	Accept analog voltage/current input, voltage, current optioned by jumping-wire JP2, factory default is voltage. (reference ground: GND)	Input voltage range: 0~10V (input impedance: 70K) Input current range: 4~20mA (input impedance: 500) Resolution: 1/1000
	YCI	Analog value input YCI	Accept analog voltage input,0~5V or 0~10V input optioned by JP1, factory default 0~5V (reference ground: GND)	Input voltage range: 0~5V(input impedance 70K), 0~10V(input impedance 36K)
	VCI	Analog value input VCI	Accept analog voltage input (reference ground: GND)	Input voltage range: 0~10V (input impedance: 70K) resolution: 1/1000
Analog value output	AO1	Analog value output1	Provide analog voltage/current output, can express 6 kinds of parameter see F5.17 parameter description, output voltage/current optioned by JP4, factory default output voltage. (reference ground: GND)	Current output range: 4~20mA
	AO2	Analog value output 2	Provide analog voltage/current output, can express 6 kinds of parameter, output voltage/current optioned by JP5, factory default output current. (reference ground: GND)	voltage output range: 0~10V
Multi-function output terminal	Y1	Open circuit collector output terminal 1	Used for multi-function switch output terminal, for detailed see	optocoupler isolation output Work voltage range:
	Y2	Open circuit collector output terminal 2	Chapter 6 Section 6.6 terminal function parameter (F5 group) output end function description. (common end: CME)	15~30V Max. output current:50mA Use method see F5.10~F5.11 description of parameter
	DO	H-speed impulse output terminal	Used for multi-function impulse signal output terminal, for detailed see Chapter 6 Section 6.6 terminal function parameter(F5 group) output end function description. (common end: CME)	
shield	PE	Shield grounding	Used for terminal connecting wire shield layer grounding, analog signal wire, 485 shield layer of 485 communication wire can be connected to this terminal	Connect with mail loop connecting wire terminal E interiorly

communic ation	RS485+		positive end	For standard RS-485 communication interface please use twisted-pair or STP
interface	RS485-	RS485- communication interface	485 difference signal negative end	

(3) control terminal CN5, arranged as follows:

(4) CN5 terminal function description as Table 3-5.

Table 3-5 CPU board CN5 terminal function

Item	symbol	name	Function description	Spec
	TA			TB-TC: always-closed,
Relay	TB	TB Inverter malfunction output relay	Normal: TB-TC closed, TA-TC open	TA-TC: always-open Contact capacity:
output terminal	TC		1	AC250V/2A ($COS\Phi=1$) AC250V/1A ($COS\Phi=0.4$)
				DC30V/1A

(5) control terminal CN8, arranged as follows:

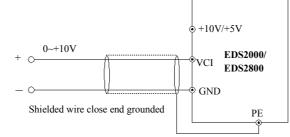

(6) CN8 terminal function description as Table 3-6.

Table 3-6 CPU board CN8 terminal function

Item	symbol	name	Function description	Spec.
	11,21	Special channel 1,	0~1A current input signal	Current and voltage
Analog input	1C、2C	channel 2 for injection molding machine signal	Current, voltage input signal common	signal don't use the same

3.6.3 Analog input output terminal wiring

(1) VCI terminal accepts analog voltage signal input, wiring as follow:

Fig.3-11 VCI terminal wiring diagram

(2) CCI terminal accepts analog signal input, jumping-wire decide to input voltage(0~10V) or input current(4~20mA), wiring mode as follows:

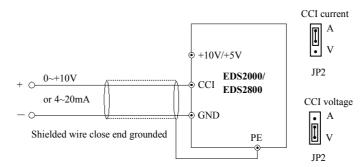


Fig.3-12 YCI terminal wiring diagram

(3) YCI terminal accepts analog voltage signal input, wiring mode as follows:

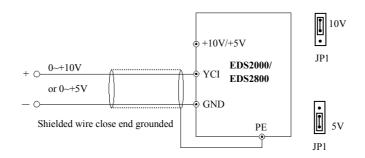


Fig.3-13 YCI terminal wiring diagram

(4) wiring of analog output terminals AO1, AO2

analog output terminals AO1, AO2 connected to analog meter and kinds of physical data can be indicated, jumping-wire decide to output current (4~20mA) or voltage (0~10V). Terminal wiring mode as Fig.3-13.

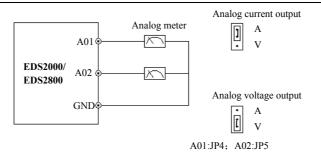


Fig.3-14 analog output terminal wiring

(5) special injection molding machine current switching signal 0~1A corresponds

to 0~10V set frequency. As shown in Fig.3-14:

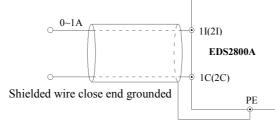
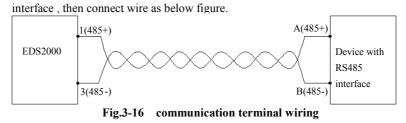


Fig.3-15 special wiring diagram for injection molding machines



 When inputing anglog signal, can connect filter capacitor or common module inductance between VCI and GND or between CCI and GND or between YCI and GND; between 1I(2I) and 1C(2C) or between 1V(2V) and 1C(2C).
 Analog input, output signal is easy to be disturbed, so must use shielded cable when wiring and well grounded, wiring length should be as short as possible.

3.6.4 Communication terminal wiring

EDS2000 inverter provides communication interface for the user .Following wiring methods make single-main single-sub control system or single-main multi-sub control system possible. Using upper machine(PC or PLC controller)software can realize real time supervision to inverter in the industrial control system so that realize complicated run control such as long-distance control, high automatization etc.

(1) When inverter RS485 interface connected to other devices with RS485

(2) Please follow below figure when connecting remote control keypad . Notice:

1) No need to set any parameter, inverter local keypad and remote control keypad can work at one time.

2) Users can according to the actual situation, choose any program of three power supplies, but shouldn't used two kinds of programs simultaneously.

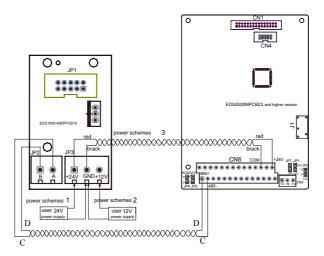
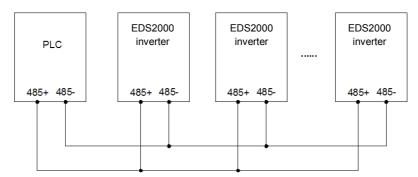



Fig.3-17 remote control keypad wiring

(3) Multiple inverters can be connected together per RS485 and 31pcs device with RS485 interface can be connected together at most. Communication system is more prone to disturbance as connected device increasing, following wiring is recommended: (fig3-18)

Fig. 3-18 recommended PLC and multiple inverters communication wiring Normal communication still not available if using above wiring, can try to take following measure:

1> Provide separate power supply for PLC (or upper machine) or isolate its power supply.

2> Apply magnetic circle on the communication wire.

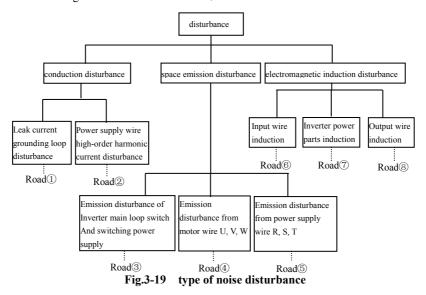
3> Reduce inverter carrier wave frequency properly.

RS485 interface of EDS2000/EDS2800 can only be used as interface of sub-device need to set PLC or PC as main unit, please refer to appendix communication protocol.

3.7 Installation guide for anti-jamming

Main circuit of the inverter is composed of high-power semiconductor switch gear, so some electromagnetic noise will arise during work, to reduce or stop disturbance to environment, show you assembling method of inverter disturbance suppressing from many aspects such as disturbance suppressing, spot wiring, system grounding, leak current, usage of power supply filter etc. in this section to be referred to during spot assembling.

3.7.1 Restraining to noise disturbance


Disturbance brought by the working inverter may affect nearby electronic device, effect degree relates to surrounding electromagnetic environment of the inverter and anti-disturbance capacity of this device.

(1) type of disturbance noise

According to work principle of the inverter, there are mainly 3 kinds of noise disturbance source:

- 1> circuit conduction disturbance; 2> space emission disturbance;
- 3> electromagnetic induction disturbance;

(2) noise spread road

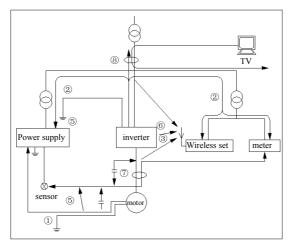


Fig.3-20 noise disturbance spread road sketch

(3) basic countermeasure for suppressing disturbance Table 3-8 disturbance suppressing countermeasure table

Noise spread road	Countermeasure of weakening effect				
1	When grounding wire of peripheral device and wiring of the inverter compose closed-loop, inverter grounding wire leakage current would make the device do wrong action. Can reduce wrong action if the device is not earthed here.				
2	High order harmonic from the inverter would make voltage and current transmit through power supply wire when peripheral device and the inverter electrified by same power supply, would disturb other devices in this same power supply system, can take following suppressing measure: assemble electromagnetic noise filter at inverter input end; isolate other devices by isolation transformer; connect power supply for peripheral device with remote power source; install ferrite filter magnetic circle for R, S, T three-phase conducting wire of the inverter to suppress conduction of high-frequency harmonic current.				
345	 Keep device and signal wire prone to disturbance from the inverter. Should use shielded signal wire, shielding layer single end earthed and try best to keep away from the inverter and its input, output wire. If signal wire must intersect strong power cable, must keep them in real intersection and avoid parallel. Install high-frequency noise filter(ferrite common module choke, folksay magnetic circle) separately at input, output root, which can effectively suppress emission disturbance from dynamic wire. Should place motor cable shield of biggish thickness, for instance set it in tube with biggish thickness (above 2mm) or bury it in cement slot. Dynamic wire set into metal tube and use shielding wire to be grounded (use 4-core motor cable, one side is 				
678	 earthed through the inverter, the other side connected to motor shell). To prevent parallel or bundled power and weak conducting wire; should keep away from inverter mounted device to the best and its wiring should keep away from power wire of the inverter such as R, S, T, U, V, W etc Should pay attention to relative mounting place between device with strong electric field or strong magnetic field and the inverter, should keep distance and vertical intersection. 				
3.7.2	Local wiring and earthing				
(1) Avoid parallel cable from inverter to motor					
(U, V, W terminal education wire) and motor cable					
power s	power supply wire (R, S, T terminal input wire).				
Should keep distance of 30cm above					

Should keep distance of 30cm above.

Fig.3-21 system wiring demand

(2) Try your best to place motor table from U, V, W terminals in metal tube or metal wiring slot.

(3) Should use shielded cable as common control signal cable, shielding layer close-to-inverter side earthed after connected with PE terminal of inverter.

(4) Cable educed from inverter PE terminal must be connected directly to earth-plate and can't be connected to ground through grounding wire of other devices.

(5) Powerful cable(R, S, T, U, V, W)should not parallel control signal cable closely, say nothing of being bundled together, must keep distance of 20~60cm above (related to size of powerful current). Should cross each other vertically if intersection, as Fig.3-19.

(6) Powerful grounding wire must be connected to earth separately from weak grounding cable such as control signal and sensor cable etc.

(7) Forbid to connect other electricity consumption device to inverter power supply input end(R, S, T).

3.7.3 Relation of long-distance wiring and current leak and the countermeasure

Highorder harmonic will form betwee n-line leak current through distributing capacitor and to-earth leak current when long-distance wiring between inverter and motor commence. Can adopt following method to suppress: (1) install ferrite magnetic circle or output reactor at inverter output side.

End voltage of the motor will be reduced markedly when installing reactor of 5% above rated voltage drop and make long-distance wiring to U, V, W. Fully loaded motor have the danger of burning itself, should work in lower volume or step up its input output voltage.

(2) Reduce carrier wave frequency but motor noise would increase accordingly.

3.7.4 Installation demand for electromagnetic on-off electronic device

Relay, magnetic control conductor and electromagnetic iron and so on, these electromagnetic on-off electronic device would bring lots of noise during work, so you should pay full attention to when installing them beside the inverter or in the same control chamber with the inverter and must install surge absorbing device as shown in Fig. 3-22.

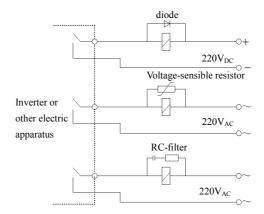


Fig.3-22 installation demand for electromagnetic on-off device

4 Run and operation explanation for inverter

4.1 Run of inverter

4.1.1 Running order channels

There are 3 kinds of order channel for controlling run action of the inverter such as run, stop, jog etc.:

0: keypad

1: control terminal

Use control terminal FWD, REV, COM to make of double-line control, or

use one terminal of X1 ${\sim}X8$ and FWD or REV to make of three-line control.

2: serial port

Control run and stop of the inverter through upper machine or other device which can communicate with the inverter.

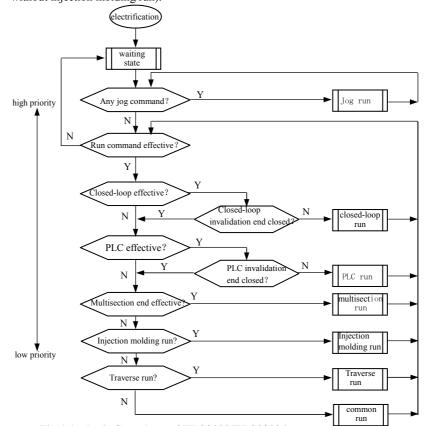
Choose order channel by setting function code F0.02; and also can choose by multi-function input terminal(F5.00~F5.07 choose 27, 28, 29 function).

Please make switching debugging in advance when switch the order channel to check if it can fulfil system requirement, otherwise have danger of damaging device and injuring personal.

4.1.2 Frequency-provision channel

Under EDS2000/EDS2800 common run mode there are 9 kinds of provision

channel:


- 0: keypad digital potentiometer provision;
- 1: direct digital frequency provision;
- 2: terminal UP/DOWN provision;
- **3:** serial port provision;
- 4: analog value VCI provision;
- 5: analog value CCI provision;
- 6: analog value YCI provision;
- 7: terminal pulse(PULSE) provision;
- 8: combination set.

4.1.3 Work state

Work state of EDS2000/EDS2800 is classified as waiting state and running state: waiting state: If there is no running command after the inverter electrified or after stop command during running state, the inverter enters into waiting state. running state: the inverter enters into running state after receiving run command. **4.1.4 Run mode**

EDS2000/EDS2800 inverter have 7 kinds of run mode, following is in turn according to their priority: jog run \rightarrow closed-loop run \rightarrow PLC run \rightarrow multi-section speed run \rightarrow injection molding run \rightarrow swing frequency run \rightarrow common run. Shown as Fig.4-1(Note: EDS2000-4T0022G/C~EDS2000-4T0110P/C are without injection molding run).

34 Fig.4-1 logic flow chart of EDS2000/EDS2800 inverter run state

0: jog run

Upon receiving jog run command (for instance, press the \bigcirc log key on keypad) during waiting state, the inverter run at jog frequency (see function code F2.06~F2.08).

1: closed-loop run

The inverter will come into closed-loop run mode when closed –loop run control effective parameter is set(F3.00=1). Namely carry on PID adjustment to specified value and feedback value(proportion integral differential calculation, see F3 group function code) and PID adjustor output is inverter output frequency. Can make closed-loop run mode ineffective and switch to lower level run mode by multi-function terminal (function 19).

2: PLC run

The inverter will enter into PLC run mode and run according to run mode preset(see F4 group function code description) through setting PLC function effective parameter(F4.00 last bit \neq 0). Can make PLC run mode ineffective and switch to lower level run mode by multi-function terminal (function 20).

3: multi-section speed run

By nonzero combination of multi-function terminal(1, 2, 3, 4 function), choose multisection frequency 1~15(F2.27~F2.41) to run at multisection speed.

4: injection molding run

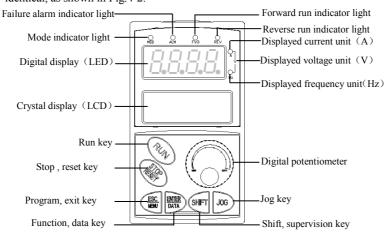
The inverter will enter into special run for injection molding machine after injection molding machine function effective parameter is set(F6.00=1).

5: traverse run

The inverter will enter into swing frequency run mode when swing frequency function effective parameter (F7.00=1) is set. Set relevant swing frequency run special parameter according to textile swing frequency craft to realize swing frequency run.

6: common run

Common open loop run mode of general inverter.


In above 6 kinds of run mode except "jog run" the inverter can run according to kinds of frequency setting method. In "PID run" "PLC run" "multisection run"

"common run" mode the inverter can also carry on pendular frequency adjustment.

4.2 Operation and use of key board

4.2.1 Keypad layout

Keypad is main unit for receiving command, displaying parameter. It is classified as LED type and LCD type, thereinto LED type keypad is standard configuration. Can choose to deploy keypad with LCD display according to customer's need. Information in English is added by the latter and display data type is noted. Outer dimension and operation method of these 2 kinds of keypad is identical, as shown in Fig.4-2.

Fig.4-2 keypad layout sketch

4.2.2 Keypad function description

There are 6 key-presses and one adjusting button for digital potentiometer on inverter Keypad and function definition of each key is as shown in table 4-1.

Table 4-1 keypad function table

key	name	Function description
ESC	program/exit key	Enter into or exit programming state
SHIFT	shift/supervision key	Can choose modification digit of set data under editor state; can switch display status supervision parameter under other state.

ENTER DATA	function/data key	Enter into the next menu or data confirmation
JOG	Jog key	Jog run is available when pressing this key under keypad mode
RUN	Run key	Enter into run mode under keypad mode
RESET	Stop/reset key	In common run status the inverter will be stopped according to set mode after pressing this key if run command channel is set as keypad stop effective mode. The inverter will be reset and resume normal stop status after pressing this key when the inverter is in malfunction status.
	Digital potentiometer	Be used to substitute for adding subtracting key and confirmation key, rotating leftward means subtracting, rotating rightward means addition, and pressing downward means confirmation(here function same as ENTER DATA key)

4.2.3 LED and indicator light

4 status indicator light: they are MOD(mode), ALM(alarm), FWD(forward run), REV (reverse run) from left to right on the LED, their respective indicating meaning is as shown in table 4-2.

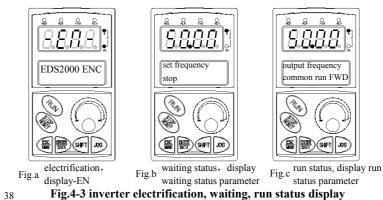
item		em	Function description		
	Dig	gital display	Display current run status parameter	and set parameter	
		A, Hz, V	unit for relevant current digital displ current is A, for voltage is V, for fr		
		MOD	This indicator light is lit in nonsuper extinguished if no key pressed for a supervision status		
Display function	Status inc	ALM	Alarm indicator light, indicate that the inverter is in over curr or over voltage suppressing status or failure alarm status currently		
unction	Status indicator light	FWD	Forward run indicator light, indicate that the inverter output forward phase order and the connected motor rotate in forward direction	The inverter work in DC brake status if FWD, REV	
		REV	reverse run indicator light, indicate that the inverter output reverse phase order and the connected motor rotate in reverse direction	indicator light is lit at the same time	

37

4.2.4 Key board display status

EDS2000 keypad display status is classified as waiting status parameter display, function code parameter editing status display, malfunction alarm status display, run status parameter display in total 4 kinds of status. LED indicator light will all be lit after the inverter electrified, and digital display LED will display character "-EN-", then enter into set frequency display. As shown in Fig.4-3 a.

(1) waiting parameter display status


The inverter is in waiting status and waiting status supervision parameter normally set frequency C-00 is displayed on keypad. As shown in Fig.4-3 b, unit is displayed by rightward unit indicator light.

To press SHIFT key, it can display different waiting status supervision parameter circularly(display C group fore 7 kinds of supervision parameter acquiescently, other supervision parameter can be defined by function code F2.14, F2.15, for detail please see C group status supervision parameter in function parameter schedule graph of chapter 5). Display status will be switched to constant supervision parameter C-00 (namely set frequency) display automatically if there's no key pressed within 1 minute.

(2) run parameter display status

The inverter enters into run status when receiving effective run command and run status supervision parameter normally output frequency C-01 is displayed on the keypad. As shown in Fig.4-3 c, unit is displayed by rightward unit indicator light.

To press SHIFT key, can display run status supervision parameter circularly (defined by function code F2.14 and F2.15). During displaying, can press DATA to switch to constant supervision parameter C-01 (namely output frequency) display, otherwise will display the last displayed parameter all along.

(3) Failure alarm display status

The inverter enters into failure alarm display status upon detecting failure signal and display failure code sparklingly(as shown in Fig.4-4); To press (SHIFT) key can look over relative

Fig.4-4 failure alarm

parameter after stopping running; Can press

key to enter into program status to see about Fd group parameter if want to search failure information.

Can carry on failure restoration by (STOP) key, control terminal or

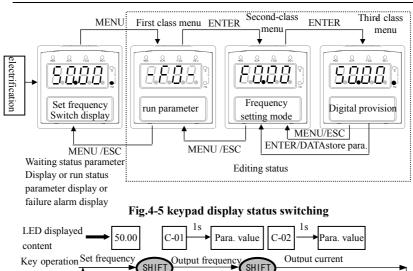
communication command on the keypad after troubleshooting. Keep displaying failure code if failure exist continuously.

For some serious failure, such as inverse module protect, over current, over voltage etc., must not carry on failure reset forcibly to make the inverter run again without failure elimination confirmed. Otherwise have danger of damaging the inverter !

(4) function code editing status

Under waiting, run or failure alarm status, press \underbrace{ESG}_{WEND} key, can enter into editing status (If user password is set, can enter into editing status after inputting the password, see also FF.00 description and Fig.4-10), and editing status is displayed according to three classes menu mode, as shown in Fig. 4-5. To press digital potentiometer or $\underbrace{ENTER}_{DATA}$ key can enter into one class by one class. Under function parameter display status, to press digital potentiometer or $\underbrace{ENTER}_{DATA}$ key to carry on parameter storage operation; To press \underbrace{ESG}_{WEND} key can only come back to upper class menu without stroring modified parameter.(Fig4-5)

4.2.5 Method for operating keypad


Can carry on various operation to the inverter through keypad, for example:

(1) status parameter display switching:

After pressing key (SHIFT), display C group status supervision parameter; after displaying one supervision parameter code for 1 second, will display this parameter value automatically:(Fig4-6)

EDS2000/EDS2800/EDS2860 series inverter service manual

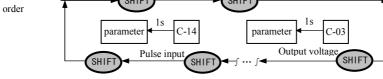


Fig. 4-6 waiting status parameter display operating example

Description:

- 1> Only C-00 \sim C-06 7 status parameters can be displayed when shipping out the inverter, the user can see about other status parameter by modifying function code F2.14, F2.15 if want, for detail please refer to F2.14, F2.15 function code description.
- 2> Can press ENTER key to switch into constant supervision C-01 display status directly when the user see about status supervision parameter.

(2) function code parameter setting

Take function code F2.06 modified from 5.00Hz to 6.00Hz as example. Boldface in Fig.4-7 shows flickering digit.(Fig4-7)

Description: under third-class menu, if the parameter has no blinking digit, this function code can't be modified, possible reasons are as follows:

1> This function code shouldn't be modified, for example actual detected status parameter, run record parameter etc.;

2> This function code can't be modified under run status and can be changed

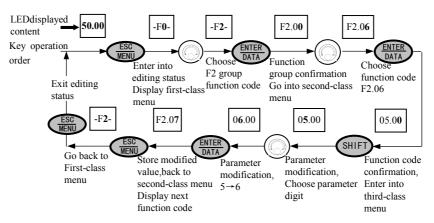


Fig.4-7 example for parameter setting and modification

after stopping running;

3> Parameter protected. All the function code can't be modified when function code F2.16=1 or 2, in order to avoid wrong operation. Need to set the function code F2.16 to 0 if you want to edit function code parameter.

(3) specified frequency adjustment for common run

Take example modifying specified frequency from 50.00Hz to 40.00Hz at F0.00=0 during running for explanation.

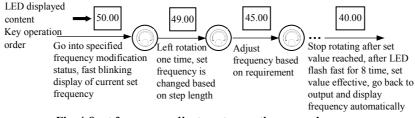
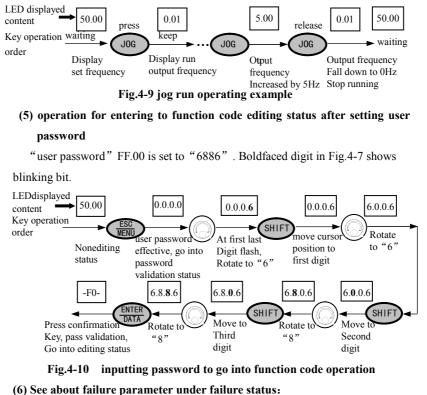



Fig. 4-8 set frequency adjustment operation example

Explanation: If the user press any key on the keypad during the process of specified frequency adjustment, current LED displayed set frequency become effective and exit from specified frequency adjustment status automatically.

(4) jog run operation

For example, keypad as current run command channel, jog run frequency 5Hz, waiting status.

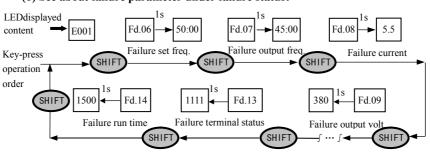


Fig.4-11 failure status searching operation example

Description:

If press (SHIFT) key under failure status the user can see about Fd group

1>

function code parameter, search range Fd.06 \sim Fd.14, LED first display function code number when the user press (SHIFT) key and display parameter digit of this function code after 1s.

2> When the user see about failure parameter, can press (ENTER DATA key directly to switch back to failure alarm display status (E0XX)

(7) keypad key-press locking operation

Under unlocked keypad situation, press key for 5s to lock the keypad. (8) keypad key-press unlocking operation

Under locked keypad situation, press key for 5s to unlock the keypad. 4.3 Inverter electrification

4.5 Inverter electrification

4.3.1 Check before electrification

Please carry on wiring based on operation requirement provided in "inverter wiring" of this Service manual.

4.3.2 First electrification

Close input side AC power supply switch after correct wiring and power supply confirmed, electrify the inverter and keypad LED display "-EN", contactor closed normally, LED displayed set frequency shows that electrification is finished. First electrification operation process is shown as figure in next page.

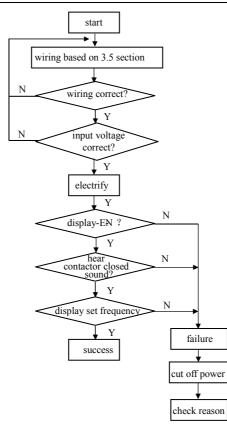


Fig. 4-12 first electrification operation flow

5 Function parameter schedule graph

5.1 Symbol description

- $\times\,$ ---- parameter can't be changed in process of running
- ---- parameter can be changed in process of running
- * ---- read-only parameter, unmodifiable

5.2 Function parameter schedule graph

		F0 –basic ru	function parameter group			
function code	name	LCD displayed content	Set range	unit	Factory default	modification
F0.00	Frequency input channel selection	Frequency input channel	 keypad potentiometer setting keypad digit setting terminal UP/DOWN adjust setting (stored after power off) serial port setting VCI analog setting (VCI GND) CCI analog setting (VCI-GND) YCI analog setting (YCI-GND) YCI analog setting (YCI-GND) terminal pulse (PULSE)setting combination setting (see F2.09 parameter) terminal UP/DOWN adjust setting (not stored after power off) 	1	0	0
F0.01	Freq. digit setting	Freq. digit setting	Lower limit freq.~upper limit freq	0.01Hz	0.00Hz	0
F0.02	Run command channel selection	Run command channel	 keypad run control terminal run command control serial port run command control 	1	0	0
F0.03	Run direction setting	Run direction setting	0: forward run 1: reverse run	1	0	0
F0.04	Preventing reverse run selection	Preventing reverse run	0: reverse run allowed 1: reverse run banned	1	0	×
F0.05	Load motor rated frequency	rated frequency	1.00-400.00Hz	0.01Hz	50.00Hz	×
F0.06	Load motor rated voltage	rated voltage	1-480V	1V	380V	×
F0.07	Load motor rated power	rated power	0.4-999.9KW	0.1KW	machine confirm	×
F0.08	Load motor rated current	rated current	0.1-999.9A	0.1A	machine confim	×
F0.09	Load motor rated speed	rated speed	1-9999	1	1440 (r/min)	×
F0.10	Accelerating	accelerating	0: linear accelerating decelerating	1	0	×

	decelerating	decelerating	mode			
	mode selection	mode	1: S curve accelerating decelerating mode			
F0.11	S curve start section time	S curve start section	$10.0(\%) - 50.0(\%)$ (accelerating decelerating time) F0.11+F0.12 \leq 90 (%)	0.1(%)	20.0(%)	0
F0.12	S curve risetime	S curve rise section	10.0(%) - 80.0(%) (accelerating decelerating time) F0.11+F0.12 ≤ 90 (%)	0.1(%)	60.0(%)	0
F0.13	accelerating decelerating time unit	accelerating decelerating unit	0: second 1: minute	1	0	×
F0.14	Acc time 1	Acc time 1	0.1-6000.0	0.1	20.0	0
F0.15	Dec time 1	Dec time 1	0.1-6000.0	0.1	20.0	0
F0.16	Upper limit freq.	Upper limit freq.	Lower limit freq400.00Hz	0.01Hz	50.00Hz	×
F0.17	Lower limit freq.	Lower limit freq.	0.00-Upper limit freq.	0.01Hz	0.00Hz	×
F0.18	Lower limit freq. run mode	Lower limit freq. mode	 run at lower limit freq. stop running 	1	0	×
F0.19	Torque boost mode	Torque boost mode	0: manual boost 1: automatic boost	1	0	0
F0.20	Torque boost	Torque boost	0.0-20.0 (%)	0.1(%)	2.0(%)	0
F0.21	V/F curve setting	V/F curve setting	 constant torque curve degressive torque curve 1 (the 2.0nd power) degressive torque curve 2 (the 1.7th power) degressive torque curve 3 (the 1.2th power) custom V/F curve (determined by F0.22 F0.27 function code) 	1	0	×
F0.22	V/Ffreq. value F1	V/Ffreq. valueF1	0.00-F0.24	0.01Hz	0.00Hz	×
F0.23	V/F volt. valu&1	V/Fvolt. valueV1	0.00-F0.25	0.1(%)	0.0(%)	×
F0.24	V/Ffreq. value F2	V/Ffreq. valueF2	F0.22-F0.26	0.01Hz	0.00Hz	×
F0.25	V/Fvolt. valueV2	V/Fvolt. valueV2	F0.23-F0.27	0.1(%)	0.0(%)	×
F0.26	V/Ffreq. value F3	V/Ffreq. value F3	F0.24-upper limit frequency	0.01Hz	0.00Hz	×
F0.27	V/Fvolt. valueV3	V/Fvolt. valueV3	F0.25-100.0%(rated voltage)	0.1(%)	0.0(%)	×

	F1 -start-up, stop, brake function parameter group									
Function code	name	LCD displayed content	Set range	unit	5	modifi- cation				
F1.00	Start-up run mode	start-up run mode	 start at start-up freq. first brake, then start at start-up freq. speed track start-up 	1	0	×				

EDS2000/EDS2800/EDS2860 series inverter service manual

F1.01	start-up freq.	start-up freq.	0.0-10.00Hz	0.01Hz	0.00Hz	0
F1.02	start-up freq. duration	start-up duration	0.0-20.0S	0.1s	0.0s	0
F1.03	DC brake volt. at start-up	start-up brake volt.	0-15 (%)	1	0	0
F1.04	DC brake time at start-up	start-up brake time	0.0-20.08	0.1s	0.0s	0
F1.05	Stop mode	Stop mode	 Dec stop free stop Dec+DC brake stop 	1	0	×
F1.06	DC brake initiative freq. when stop running	Stop running brake freq.	0.0-15.00Hz	0.01Hz	0.00Hz	0
F1.07	DC brake time when stop running	Stop running brake time	0.0-20.0s	0.0s	0.0s	0
F1.08	DC brake voltage when stop running	Stop running brake voltage	0-15 (%)	1	0	0

	F2 –auxiliary run function parameter group							
Function code	name	LCD displayed content	Set range	unit	Factory default	modifi- cation		
F2.00	Analog filter time constant	filter time	0.00-30.00s	0.01s	0.20s	0		
F2.01	Forward reverse run dead-section time	Forward reverse run dead-section	0.0-3600.0s	0.1s	0.0s	0		
F2.02	Automatic energy save run	Automatic energy save run	0: no action 1: action	1	0	×		
F2.03	AVR function	AVR function	0: no action 1: action all the time	1	0	×		
			2: no action only during Dec					
F2.04	Slip frequency compensation	Slip compensation	0~150(%)0-no slip frequency compensation	1	0	×		
F2.05	Carrier wave freq.	Carrier wave freq.	0.7-16.0K	0.1K	depend on machine type	×		
F2.06	Jog run frequency	Jog run frequency	0.10-50.00Hz	0.01Hz	5.00Hz	0		
F2.07	Jog Acc time	Jog Acc time	0.1-60.0s	0.1s	20.0s	0		
F2.08	Jog Dec time	Jog Dec time	0.1-60.0s	0.1s	20.0s	0		
F2.09	Frequency input channel combination	Frequency combination setting	0: VCH-CCI 1: VCH-CCI 2: YCH-CCI 3: YCH-CCI 4: VCH YCI 5: VCH YCI 6: exterior pulse provision	1	0	×		

r	1		1			
			+CCI			
			7: exterior pulse provision			
			-CCI			
			8: MAX (VCI, YCI)			
			9: MIN (VCI, YCI)			
			10: MAX (YCI, VCI,			
			PULSE)			
			11: MIN (YCI, VCI ,			
			PULSE)			
			12: VCI, YCI any nonzero			
			value effective, VCI			
			preferred			
			13: VCI, CCI any nonzero			
			value effective, VCI			
1			preferred			
			14: VCI+YCI(for			
1			controlling simple strain)			
			15: RS485+CCI			
			16: RS485-CCI			
			17: RS485+VCI			
			18: RS485-VCI			
			19: RS485+keypad			
			potentiometer			
			20: RS485- keypad			
			potentiometer			
			21: VCI+ keypad			
			potentiometer			
			22: VCI keypad			
			potentiometer			
			23: CCI+ keypad			
			potentiometer			
			24: CCI- keypad			
			potentiometer			
			25: reserved			
			26: reserved			
			27: reserved			
F2.10	Principal subordinate	Principal subordinate	0 (%) -500 (%)			
	machine	machine				
	communication	communication		1(%)	100(%)	0
	frequency provision	frequency provision				
	proportion					
	Output voltage	Output voltage	50-150 (%)			
F2.11	emendation factor	emendation factor		1(%)	100(%)	0
F2.12	Heat sink temperature	Heat sink	50-150 (%)			
	emendation factor	temperature		1(%)	100(%)	0
		emendation factor		•(/0)	100(70)	0
	1					

F2.13	Load motor speed	Load motor speed	50-150 (%)			
F2.13	Load motor speed	Load motor speed	50-150 (%)	1(0()	100/0/)	0
	emendation factor	emendation factor		1(%)	100(%)	0
F2.14	LED display control 1	Control 1	0000-1111	1	0000	0
			first bit: running time			
			0: not display			
			1: display			
			second bit: accumulative			
			time			
			0: not display			
			1: display			
			third bit: input terminal			
			0: not display			
			1: display			
			kilobit(fourth bit): output			
			terminal			
			0: not display			
			1: display			-
F2.15	LED display control 2	Control 2	0000-1111 first bit: analog input VCI	1	0000	0
			0: not display			
			1: display			
			second bit: analog input			
			YCI			
			0: not display			
			1: display			
			third bit: analog input CCI			
			0: not display			
			1: display			
			kilobit(fourth bit): exterior			
			pulse input			
			0: not display			
E2.17	D	D	1: display 0: all parameter allowed to	1	0	~
F2.16	Parameter operation	Parameter operation	 all parameter allowed to be modified 	1	0	×
	control		1: except this parameter, all			
			other parameter not allowed			
			to be			
			modified			
			2: except F0.01 and this			
			parameter, all other			
			parameter not allowed to be			
			modified			
			3: clear history failure record			
			4: renew factory default			
			5: parameter uploading			
			6: parameter downloading			

F2.17	Communication	Communication	LED first bit: baud rate	1	0005	×
	configuration	configuration	option		0000	
	configuration	comgatation	0: 300BPS			
			1: 600BPS			
			2: 1200BPS			
			3: 2400BPS			
			4: 4800BPS			
			5: 9600BPS			
			6: 19200BPS			
			7: 38400BPS			
			LED second bit: data format			
			0: $1-8-1$ format, no			
			checkout			
			1: 1-8-1 format, even			
			checkout			
			2: 1-8-1 format, odd			
			checkout			
	Local address	Local address	0-127, 127 is broadcast			
F2.18			address	1	1	×
	Communication	Communication	0.0-1000.0s			
F2.19	overtime	overtime		0.1s	0.0s	×
	Local responsion	Local responsion	0-1000ms			
F2.20	delay	delay		1ms	5ms	×
F2.21	Acc time 2	Acc time 2	0.1-6000.0	0.1	20.0	0
F2.22	Dec time 2	Dec time 2	0.1-6000.0	0.1	20.0	0
F2.23	Acc time 3	Acc time 3	0.1-6000.0	0.1	20.0	0
F2.24	Dec time 3	Dec time 3	0.1-6000.0	0.1	20.0	0
F2.25	Acc time 4	Acc time 4	0.1-6000.0	0.1	20.0	0
F2.26	Dec time 4	Dec time 4	0.1-6000.0	0.1	20.0	0
F2.27	Multisection freq. 1	Multisection freq. 1	Lower limit freq. – upper limit freq.	0.01Hz	5.00Hz	0
F2.28	Multisection freq. 2	Multisection freq. 2	Lower limit freq. – upper limit freq.	0.01Hz	10.00Hz	0
F2.29	Multisection freq. 3	Multisection freq. 3	Lower limit freq. – upper limit freq.	0.01Hz	20.00Hz	0
F2.30	Multisection freq. 4	Multisection freq. 4	Lower limit freq. – upper limit freq.	0.01Hz	30.00Hz	0
F2.31	Multisection freq. 5	Multisection freq. 5	Lower limit freq. – upper limit freq.	0.01Hz	40.00Hz	0
F2.32	Multisection freq. 6	Multisection freq. 6	Lower limit freq. – upper limit freq.	0.01Hz	45.00Hz	0
F2.33	Multisection freq. 7	Multisection freq. 7	Lower limit freq. – upper limit freq.	0.01Hz	50.00Hz	0
F2.34	Multisection freq. 8	Multisection freq. 8	Lower limit freq. – upper limit freq.	0.01Hz	5.00Hz	0

F2.35	Multisection freq. 9	multisection freq. 9	Lower limit freq. — upper limit freq.	0.01Hz	10.00Hz	0
F2.36	Multisection freq. 10	Multisection freq. 10	Lower limit freq. — upper limit freq.	0.01Hz	20.00Hz	0
F2.37	Multisection freq. 11	Multisection freq. 11	Lower limit freq. — upper limit freq.	0.01Hz	30.00Hz	0
F2.38	Multisection freq. 12	Multisection freq. 12	Lower limit freq. — upper limit freq.	0.01Hz	40.00Hz	0
F2.39	Multisection freq. 13	Multisection freq. 13	Lower limit freq. – upper limit freq.	0.01Hz	45.00Hz	0
F2.40	Multisection freq. 14	Multisection freq. 14	Lower limit freq. — upper limit freq.	0.01Hz	50.00Hz	0
F2.41	Multisection freq. 15	Multisection freq. 15	Lower limit freq. – upper limit freq.	0.01Hz	50.00Hz	0
F2.42	Jumping freq. 1	Jumping freq. 1	0.00-400.00Hz	0.01Hz	0.00Hz	\times
F2.43	Jumping freq. 1 range	Jumping range 1	0.00-30.00Hz	0.01Hz	0.00Hz	×
F2.44	Jumping freq. 2	Jumping freq. 2	0.00-400.00Hz	0.01Hz	0.00Hz	×
F2.45	Jumping freq. 2 range	Jumping range 2	0.00-30.00Hz	0.01Hz	0.00Hz	×
F2.46	Jumping freq. 3	Jumping freq. 3	0.00-400.00Hz	0.01Hz	0.00Hz	×
F2.47	Jumping freq. 3 range	Jumping range 3	0.00-30.00Hz	0.01Hz	0.00Hz	×
F2.48	Setting run time	Setting run time	0-65535 hours	1	0	0
F2.49	Accumulative run time	Accumulative run time	0-65535 hours	1	0	*

		F3 –closed-loop ru	n function parameter group			
Function code	name	LCD displayed content	Set range	unit	Factory default	modif- ication
F3.00	Closed-loop run control selection	Closed-loop function selection	0: closed-loop control ineffective 1: PID closed-loop control effective 2: reserved	1	0	×
F3.01	Provision channel selection	Provision channel selection	 digital voltage provision digital pressure provision VCI analog 0-10V voltage provision CCI analog provision keypad potentiometer provision 	1	1	0
F3.02	Feedback channel selection	Feedback channel selection	 VCI analog input voltage 0– 10V CCI analog input VCI+CCI VCI-CCI VCI-CCI Min { VCI, CCI } Max { VCI, CCI } 	1	1	0

1.111	E2 02	Divital	Divited and the second	0.00 10.001/	0.01	0.0017	0
F3.05 Minimum specified Minimum specified 0.0-maximum specified value 0.1(%) 0.0(%) \bigcirc F3.06 seconding to random specified value pecentage relative to 1000V 0.1(%) 0.0(%) \bigcirc F3.06 seconding to random specified value 0.0-100.0(%) 0.1(%) 0.0(%) \bigcirc F3.07 pressure value pressure value responding to random specified value 0.00-9.999Mpa 0.001 0.0000mpa \bigcirc F3.08 maximum specified maximum specified value -100.0 (%) 0.1(%) 100.0(%) \bigcirc F3.08 maximum specified maximum specified value -100.0 (%) 0.1(%) 100.0(%) \bigcirc F3.08 maximum specified value receback of maximum specified value 0.1(%) 100.0(%) \bigcirc F3.10 pressure value pressure value responding in minimum provision 0.000-9.999 0.001 10000 \bigcirc F3.11 preportion gain KP proportion gain 0.000-9.999 0.001 0.000 \bigcirc F3.12 briegral gain K1 integral gain 0.000-9.999 0.001 0.000 \bigcirc F3.13 <t< td=""><td></td><td><u> </u></td><td><u> </u></td><td></td><td></td><td></td><td>-</td></t<>		<u> </u>	<u> </u>				-
13.00valuevaluevaluepercentage relative to 1000V $0.1(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ F3.06feedback value mainum specified valueFeedback of minimum specified value $0.00-100.0(\%)$ $0.1(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ F3.07pressure value responding to F3.06pressure value responding to minimum provision $0.00-9.999Mpa$ 0.001 $0.000Mpa$ $0.000Mpa$ F3.08maximum specified maximum specified valuefeedback of maximum specified value $0.1(\%)$ $0.000(\%)$ $0.000Mpa$ F3.10responding to F3.09feedback of maximum specified value $0.00-9.999Mpa$ 0.01 0.000 0.000 F3.11proportion gainPressure value responding to minimum provision $0.000-9.999Mpa$ 0.001 0.000 0.000 F3.12Integral gain K1Integral gain $0.000-9.999$ 0.001 0.000 0.000 F3.13Differential gain $0.000-9.999$ 0.001 0.000 0.000 F3.14Sampling time $0.01-1.00s$ $0.01s$ $0.10s$ $0.10s$ F3.15Deviation margin frequency $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ $2.0(\%)$ F3.16Closed-loop preset frequencyClosed-loop preset frequency $0.00-400.00Hz$ $0.11Kz$ $0.01z$ $\times T$ F3.18Reviral frequencyThershold $0.00-400.00Hz$ $0.11Kz$ $0.01z$ $\times T$ F3.20Iseef requencyInschold $0.0-100.0\%$ $0.$	F3.04	• · •	• · •	1	0.01	0.000Mpa	0
F3.06 feedback value Feedback of minimum specified value $0.0-100.0(\%)$ $0.1(\%)$ $0.0(\%)$ $0.0(\%)$ F3.07 pressure value pressure value responding to F3.06 pressure value exponding to F3.06 $0.000-9.999Mpa$ 0.001 $0.000Mpa$ 0.000 F3.08 maximum specified value $0.000-9.999Mpa$ 0.001 0.000% 0.000% 0.000% 0.00% <	F3.05		-	1 .	0.1(%)	0.0(%)	0
1.1.00 minimum specified valuespecified value $0.0-100.0(\%)$ $0.1(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ $0.0(\%)$ 0.000				percentage relative to 10.00V			
Initial mark valueI0.00.00.1(%)0.0(%)0.0(%)0F3.07pressure value responding to F3.06pressure value responding to minimum provision0.000–9.999Mpa0.0010.000Mpa0F3.08maximum specified valuemaximum specified value -100.0 (%)0.1(%)100.0(%)0F3.09feedback value responding to F3.06Feedback value pressure value responding to minimum specified value0.001–0.0 (%)0.1(%)100.0(%)0F3.10pressure value responding to F3.09pressure value responding to minimum provision0.000–9.999Mpa0.0011.000Mpa0F3.11proportion gain K1Integral gain0.000–9.9990.0010.00000F3.13Differential gain0.001–1.00s0.01s0.10s000F3.14Sampling time TSampling time0.01–1.00s0.01s0.01s0.01s0F3.15Deviation margin frequencyDeviation margin remark: percentage relative to closed-loop specified maximum value0.1(%)2.0(%) \sim F3.16Closed-loop preset frequencyClosed-loop preset frequency holding time0.00–400.00Hz0.01Hz0.00Hz \times F3.18Reviral frequency HarsholdThreshold0.0–400.00Hz0.01Hz0.00Hz \times F3.20Integral separation harsholdD.0–100.0%0.1%0.01Hz \times F3.21Closed-loop requencyBack difference0.0–400.00	F3.06						
valuevalueressure value ressure value responding to F3.06ressure value responding to F3.06ressure value responding to F3.06ressure value value $0.000-9.999Mpa$ 0.001 $0.000Mpa$ \bigcirc F3.08maximum specified valuemaximum specified valueMinimum specified value $-100.0 (\%)$ $0.1(\%)$ $100.0(\%)$ \bigcirc F3.09feedback value responding to F3.06recelback of maximum specified value $0.00-9.999Mpa$ 0.01 $100.0(\%)$ \bigcirc F3.10pressure value responding to F3.06pressure value responding noninnumprovision noninnumprovision $0.000-9.999Mpa$ 0.001 0.000 \bigcirc F3.11proportion gain KP proportion gain MD $0.000-9.999Mpa$ 0.001 0.000 \bigcirc F3.12Integral gain K1Integral gain $0.000-9.999Mpa$ 0.001 0.000 \bigcirc F3.13Differential gain $0.000-9.999Mpa$ 0.001 0.000 \bigcirc F3.14Sampling time TSampling time $0.01-1.00s$ 0.011 0.000 \bigcirc F3.15Deviation marginDeviation margin $0.0-20.0 (\%)$ remark: percentage relative to resourcel-loop specified maximum value $0.011k$ $0.00Hz$ \bigcirc F3.16Closed-lop preset frequencyClosed-lop preset frequency $0.00-400.00Hz$ $0.01k$ $0.00Hz$ $×$ F3.18Revival frequencyBack difference $0.00-400.00Hz$ $0.01k$ $0.00Hz$ $×$ F3.18Sleep frequencyBack difference			specified value	0.0-100.0(%)	0.1(%)	0.0(%)	0
F3.07 ressure value responding to F3.06pressure value responding to minimum provision $0.000-9.999 Mpa$ 0.001 $0.000 Mpa$ \bigcirc F3.08 valuemaximum specified valuemaximum specified valuemaximum specified valueMinimum specified value -100.0 (%) $0.1(%)$ $100.0(%)$ \bigcirc F3.09 responding to resoure value responding to F3.09recellack of maximum specified value $0.0-100.0$ (%) $0.1(%)$ $100.0(%)$ \bigcirc F3.10 resoure value responding to F3.09pressure value responding to minimam provision $0.000-9.999 Mpa$ 0.001 $1.000 Mpa$ \bigcirc F3.11 proportion gain KP reportion gain K1preportion gain $0.000-9.999$ 0.001 0.050 \bigcirc F3.13 S1Differential gain $0.000-9.999$ 0.001 0.000 \bigcirc \bigcirc F3.14 S3 S3 F3.15Sampling time TSampling time $0.01-1.00S$ $0.01S$ \bigcirc \bigcirc F3.15 F3.15Deviation margin frequencyDeviation margin frequency $0.00-20.0$ (%) remark: percentage relative to closed-loop specified maximum value $0.01Hz$ $0.00Hz$ \bigcirc F3.17 F3.18 F3.18Closed-loop preset frequency $0.0-40.00Hz$ $0.01Hz$ $0.0Hz$ \sim F3.18 F3.20Revival frequency frequency $0.0-400.00Hz$ $0.01Hz$ $0.0Hz$ \sim F3.19 F3.21 F3.22Sleep frequency requency $0.0-100.0\%$ 0.1% $0.0Hz$ \sim F3.22 F3.22Closed-loop requency							
responding to F3.06to minimum provision $0.000 - 9.999 Mpa$ 0.001 $0.000 Mpa$ \bigcirc F3.08maximum specified valuemaximum specified valueMinimum specified value -100.0 (%) $0.1(\%)$ 100.0% \bigcirc F3.09feedback value responding to F3.09Feedback of maximum specified value $0.0 - 100.0$ (%) $0.1(\%)$ 100.0% \bigcirc F3.10pressur value responding to F3.09pressur value responding to minimum provision $0.00 - 9.999 Mpa$ 0.001 $1.000 Mpa$ \bigcirc F3.11proportion gain KPproportion gain $0.000 - 9.999 Mpa$ 0.001 0.000 \bigcirc F3.13Differential gain $0.000 - 9.999$ 0.001 0.000 \bigcirc F3.14Sampling time TSampling time $0.01 - 1.00\%$ 0.011 0.001 \bigcirc F3.15Deviation marginDeviation margin $0.00 - 9.999$ 0.001 0.001 \bigcirc F3.16Closed-lop preset frequencyfrequency $0.0 - 20.0$ (%) remark: percentage relative to closed-loop specified maximum value \bigcirc \bigcirc F3.17Closed-lop preset frequencyfrequency holding time $0.0 - 400.00Hz$ $0.1K$ $0.0K$ \bigcirc F3.18Revival frequencyHarshold $0.0 - 400.00Hz$ $0.1K$ $0.0K$ $×$ F3.19Sleep frequencyIntegral separation p1D adjusting characteristic $0.0 - 100.0\%$ $0.1K$ $0.0K$ $×$ F3.20Integral separation PD adjusting characteristic 0.0	F3 07		pressure value responding				
F3.08maximum specified valuemaximum specified valueMinimum specified value -100.0 (%) $0.1(\%)$ $100.0(\%)$ \bigcirc F3.09feedback value responding to maximum specified value valueFeedback of maximum specified value $0.0-100.0$ (%) $0.1(\%)$ $100.0(\%)$ \bigcirc F3.10pressure value responding to F.300pressure value responding to minimum provision to minimum provision $0.00-9.999Mpa$ 0.001 $1.0000/pa$ \bigcirc F3.11proportion gain KP proportion gain $0.000-9.999$ 0.001 0.000 \bigcirc F3.12Integral gain K1Integral gain $0.000-9.999$ 0.001 0.000 \bigcirc F3.13Differential gain $0.000-9.999$ 0.001 0.000 \bigcirc F3.14Sampling time TSampling time $0.01-1.00s$ $0.01s$ $0.10s$ \bigcirc F3.15Deviation margin $0.0-20.0$ (%) remark: percentage relative to colsed-loop specified maximum value $0.1(\%)$ $2.0(\%)$ \bigcirc F3.17Closed-loop preset frequencyClosed-loop preset frequency holding time $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \sim F3.18Revival frequencyBack difference $0.00-400.00Hz$ 0.1% $0.00Hz$ \times F3.19Sleep frequencyBack difference $0.00-400.00Hz$ 0.1% 100.0 \bigcirc F3.20PID adjusting characteristic $0.0-100.0\%$ 0.1% 10.0 \bigcirc F3.21Closed-loop requency $0.0-100.0\%$ 0.1%	15.07	-	1 1 0	0.000-9.999Mpa	0.001	0.000Mpa	0
valuevalue-100.0 (%)0.1(%)100.0(%) \bigcirc F3.09feedback value responding to naviums specified valueFeedback of maximum specified value0.0-100.0 (%)0.1(%)100.0(%) \bigcirc F3.10pressure value responding to F3.09pressure value are sponding to minimum provision0.00-9.999Mpa0.0011.000Mpa \bigcirc F3.11proportion gain KPproportion gain0.000-9.9990.0010.005 \bigcirc \bigcirc F3.12Integral gain K1Integral gain0.000-9.9990.0010.000 \bigcirc \bigcirc F3.13Differential gainDifferential gain0.00-9.9990.0010.000 \bigcirc F3.14Sampling time TSampling time0.01-1.00s0.01s0.10s \bigcirc F3.15Deviation marginDeviation margin requency0.0-20.0 (%) remark: percentage relative to closed-loop specified maximum value0.01Hz0.00Hz \bigcirc F3.16Closed-lop preset frequencyfrequency0upper limit frequency0.01Hz0.00Hz \bigcirc F3.17Closed-loop preset frequency holding timefirene0.00-400.00Hz0.1S0.0S $×$ F3.18Revival frequencyBack difference0.00-400.00Hz0.01Hz0.0Hz $×$ F3.20Integral separation phareshold0.0-100.0%0.1%100.0 \bigcirc F3.21Closed-loop requency0: positive 1: negative10 $×$ F3.22reservedIntegral separation <br< td=""><td>E2 08</td><td></td><td>1</td><td>Minimum specified value</td><td></td><td></td><td></td></br<>	E2 08		1	Minimum specified value			
F3.09feedback value responding to maximum specified valuefeedback of maximum specified value $0.0-100.0$ (%) $0.1(%)$ 100.0% $0.1(%)$ F3.10pressure value responding to F3.09pressure value responding to minimum provision $0.000-9.999Mpa$ 0.001 $1.000Mpa$ 0.001 F3.11proportion gain KP proportion gain $0.000-9.999$ 0.001 0.050 0.015 F3.12Integral gain KI Integral gain $0.000-9.999$ 0.001 0.050 0.015 F3.13Differential gain $0.000-9.999$ 0.001 0.000 0.000 F3.14Sampling time T Sampling time 0 $0.01-1.00s$ $0.01s$ $0.01s$ $0.00t$ F3.15Deviation margin requencyDeviation margin requency $0.0-20.0$ (%) remark: percentage relative to closed-loop specified maximum value $0.01Hz$ $0.00Hz$ $0.00Hz$ F3.16Closed-lop preset frequencyClosed-loop preset frequency holding time $0.0-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.18Revival frequencyThreshold $0.0-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19Sleep frequencyBack difference $0.0-100.0\%$ 0.1% 100.0 0.00 F3.21Closed-loop model requency $0.0-100.0\%$ 0.1% 100.0 $0.0Hz$ \times F3.17Closed-loop preset frequency $0.0-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.18Revival frequencyBack difference $0.0-100.0\%$ 0	15.08	1		•	0.1(%)	100.0(%)	0
P3.09 maximum specified valueresponding to maximum specified valueresponding to specified value 0100.0 (%) $0.1(\%)$ $1000(\%)$ 0.000% F3.10 pressure value responding to F3.09pressure value responding to minimum provision $0.000-9.999Mpa$ 0.001 $1.000Mpa$ 0.001 F3.11 proportion gain KP F3.12proportion gain KD Integral gain K1Integral gain $0.000-9.999$ 0.001 0.000 0.001 F3.13Differential gain $0.000-9.999$ 0.001 0.000 0.001 0.001 F3.14Sampling time TSampling time $0.01-1.00s$ $0.011s$ $0.016s$ $0.016s$ F3.15Deviation margin frequencyDeviation margin remark: percentage relative to closed-loop specified maximum value $0.01Hz$ $0.00Hz$ $0.00Hz$ F3.16Closed-lop preset frequency timeClosed-loop preset frequency time $0.0-400.00Hz$ $0.01Hz$ $0.00Hz$ $0.00Hz$ F3.18Revival frequencyThreshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19Sleep frequency holding timeThreshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19Sleep frequency holding time $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.20Integral separation PID adjusting characteristic $0.0-100.0\%$ 0.1% $0.00Hz$ \times F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% $0.01Hz$ $0.01Hz$				-100.0 (%)			
maximum specified valuerrr <thr< th="">rrrr<td>F3.09</td><td></td><td></td><td>0.0 - 100.0 (%)</td><td>0.1(%)</td><td>100.0%</td><td>0</td></thr<>	F3.09			0.0 - 100.0 (%)	0.1(%)	100.0%	0
F3.10pressure value responding to F3.09pressure value responding to minimum provision to minimum provision $0.000-9.999Mpa$ 0.001 $1.000Mpa$ \bigcirc F3.11proportion gain KPproportion gain $0.000-9.999$ 0.001 0.050 \bigcirc F3.12Integral gainDifferential gain $0.000-9.999$ 0.001 0.050 \bigcirc F3.13Differential gainDifferential gain $0.000-9.999$ 0.001 0.000 \bigcirc F3.14Sampling time TSampling time $0.01-1.00s$ $0.01s$ $0.10s$ \bigcirc F3.15Deviation margin frequencyDeviation margin $0.0-20.0$ (%) remark: percentage relative to closed-loop specified maximum value $0.1(\%)$ $2.0(\%)$ \bigcirc \bigcirc F3.16Closed-lop preset frequencyClosed-loop preset frequency $0.0-400.00Fz$ $0.01Hz$ $0.00Hz$ \bigcirc F3.17Closed-loop preset frequencyClosed-loop preset frequency holding time $0.00-400.00Hz$ $0.11Hz$ $0.00Hz$ \times F3.18Revival frequencyThreshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19Sleep frequencyBack difference $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.22reservedII \bigcirc \bigcirc \bigcirc F3.23reservedII \bigcirc \bigcirc F3.24reservedII			specified value	0.0 100.0 (707	0.1(70)	100.0(70)	0
P3.10 responding to F3.09 to minimum provision 0.000-9.999Mpa 0.001 1.000Mpa \bigcirc F3.11 proportion gain KP proportion gain 0.000-9.999 0.001 0.050 \bigcirc F3.12 Integral gain KI Integral gain Differential gain 0.000-9.999 0.001 0.000 \bigcirc F3.13 Differential gain Differential gain 0.000-9.999 0.001 0.000 \bigcirc F3.14 Sampling time T Sampling time 0.01-1.00s 0.01s 0.10s \bigcirc F3.15 Deviation margin Deviation margin 0.0-20.0 (%) remark: percentage relative to closed-loop specified maximum value 0.01Hz 0.00Hz \bigcirc F3.16 Closed-lop preset frequency Closed-loop preset frequency holding time Closed-loop preset O-upper limit frequency 0.01Hz 0.00Hz $×$ F3.17 Closed-loop preset frequency Closed-loop preset O-o-6000s 0.1s 0.0s $×$ F3.19 Sleep frequency Back difference 0.0-400.00Hz 0.01Hz 0.0Hz $×$ F3.20 Integral separation pID adjusting characteristic	F2 10		pressure value responding				
F3.12 Integral gain KI Integral gain 0.000-9.999 0.001 0.000 \bigcirc F3.13 Differential gain Differential gain 0.000-9.999 0.001 0.000 \bigcirc F3.14 Sampling time T Sampling time 0.01-1.00s 0.01s 0.10s \bigcirc F3.15 Deviation margin Deviation margin 0.0-20.0 (%) remark: percentage relative to closed-loop specified maximum value 0.1(%) 2.0(%) \bigcirc F3.16 Closed-loop preset frequency frequency \bigcirc \bigcirc \bigcirc \bigcirc F3.17 Closed-loop preset frequency frequency \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc F3.18 Revival frequency Threshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19 Sleep frequency Back difference $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.20 Integral separation PID adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21 Closed-loop adjusting characteristic \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	F3.10	r		0.000-9.999Mpa	0.001	1.000Mpa	0
F3.13Differential gainDifferential gain0.000-9.9990.0010.000 \bigcirc F3.14Sampling time TSampling time0.01-1.00s0.01s0.10s \bigcirc F3.15Deviation marginDeviation margin $0.0-20.0$ (%) remark: percentage relative to closed-loop specified maximum value0.1(%)2.0(%) \bigcirc F3.16Closed-lop preset frequencyClosed-lop preset frequency $0-upper limit frequency$ $0.01Hz$ $0.00Hz$ \bigcirc F3.17Closed-loop preset frequency holding timeClosed-loop preset frequency holding time $0.00-400.00Hz$ $0.11k$ $0.00Hz$ \times F3.19Sleep frequencyBack difference $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.00-100.0\%$ 0.1% 100.0 \bigcirc F3.22reserved \frown \bigcirc \bigcirc \bigcirc F3.23reserved \frown \bigcirc \bigcirc F3.24reserved \frown \bigcirc \bigcirc F3.25failure relay delayRange: $0:no$ delay time \bigcirc	F3.11	proportion gain KP	proportion gain	0.000-9.999	0.001	0.050	0
F3.14Sampling time TSampling time $0.01-1.00s$ $0.01s$ $0.01s$ $0.10s$ \bigcirc F3.15Deviation marginDeviation margin $0.0-20.0$ (%) remark: percentage relative to closed-loop specified maximum $0.1(\%)$ $2.0(\%)$ \bigcirc F3.16Closed-lop preset frequencyClosed-lop preset frequencyClosed-lop preset frequency \bigcirc \bigcirc \bigcirc F3.17Closed-loop preset frequencyClosed-loop preset frequency holding time \bigcirc \bigcirc \bigcirc \bigcirc F3.18Revival frequencyThreshold \bigcirc \bigcirc \bigcirc \bigcirc \checkmark \checkmark F3.19Sleep frequencyBack difference \bigcirc \bigcirc \bigcirc \bigcirc \checkmark \checkmark F3.20Integral separation PID adjusting threshold \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \checkmark F3.22reserved \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc F3.23reserved \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc F3.24reserved \frown \bigcirc \bigcirc \bigcirc \bigcirc F3.25failure relay delayRange: \bigcirc \bigcirc \bigcirc \bigcirc	F3.12	Integral gain KI	Integral gain	0.000-9.999	0.001	0.050	0
F3.15Deviation marginDeviation margin $0.0 - 20.0 (\%)$ remark: percentage relative to closed-loop specified maximum $0.1(\%)$ $2.0(\%)$ $2.0(\%)$ F3.16Closed-lop preset frequencyClosed-lop preset frequency $0 - upper limit frequency$ $0.01Hz$ $0.00Hz$ \odot F3.17Closed-loop preset frequencyClosed-loop preset frequency holding time $0.0 - 400.00Hz$ $0.01Hz$ $0.00Hz$ \sim F3.18Revival frequencyThreshold $0.00 - 400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19Sleep frequencyBack difference $0.00 - 400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.20Integral separation PID adjusting threshold $0.0 - 100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic 0.0 0.0 0.0 1 0.0 F3.22reserved $ 0.0$ 0.0 0.1% 0.0 F3.23reserved $ 0.0$ 0.0 0.0 F3.24reserved $ 0.0$ 0.0 F3.25failure relay delayRange: 0.00 clay time $ 0.0$	F3.13	Differential gain	Differential gain	0.000-9.999	0.001	0.000	0
F3.16Closed-lop preset frequencyClosed-lop preset frequency $0-upper limit frequency$ $0.01Hz$ $0.00Hz$ X F3.18Revival frequencyThreshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ X X F3.19Sleep frequencyBack difference $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ X F3.20Integral separation PID adjusting thresholdBack difference $0.00-100.0\%$ 0.1% 100.0 0.0^{-1} F3.21Closed-loop adjusting characteristicGrosense $0.0-100.0\%$ 0.1% 10.0 0.0^{-1} F3.22reservedIntegral separation prime characteristicGrosense $0.0-100.0\%$ 0.1% 10.0 0.0^{-1} F3.22reservedIntegral separation characteristicGrosenseIntegral separation $1: negative$ 1 0 0 F3.23reservedIntegral separation $1: negative$ Integral separation $1: negative$ Integral separation $1: negative$ Integral separation $1: negative$	F3.14	Sampling time T	Sampling time	0.01-1.00s	0.01s	0.10s	0
F3.16Closed-lop preset frequencyClosed-lop preset frequency $0-upper limit frequency$ $0.01Hz$ $0.0Hz$ $0.0Hz$ $0.0Hz$ F3.17Closed-lop preset frequencyClosed-lop preset frequency holding time $0.0-6000s$ $0.1s$ $0.0s$ \times F3.18Revival frequencyThreshold $0.00-400.00Hz$ $0.01Hz$ $0.0Hz$ \times F3.18Revival frequencyThreshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.19Sleep frequencyBack difference $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ \times F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.22reserved $ 0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.23reserved $ 0.0-100.0\%$ 0.1% 0.0% \bigcirc F3.24reserved $ 0.0-100.0\%$ 0.0% 0.0% \bigcirc F3.25failure relay delay $ 0.0-100.0\%$ 0.0% 0.0%	F3.15	Deviation margin	Deviation margin	0.0-20.0 (%)	0.1(%)	2.0(%)	
F3.16Closed-lop preset frequencyClosed-lop preset frequency0-upper limit frequency0.01Hz0.00Hz0F3.17Closed-loop preset frequency holding timeClosed-loop preset frequency holding time0.06000s0.1s0.0s×F3.17Closed-loop preset frequency holding timeClosed-loop preset frequency holding time0.0-6000s0.1s0.0s×F3.18Revival frequencyThreshold0.00-400.00Hz0.01Hz0.0Hz×F3.19Sleep frequencyBack difference0.00-400.00Hz0.01Hz0.0Hz×F3.20Integral separation phreshold0.0-100.0%0.1%100.0○F3.21Closed-loop adjusting threshold0: positive 1: negative10×F3.22reservedII0○F3.23reservedII0○F3.24reservedII0○F3.25failure relay delayRange: 0:no delay timeII0				remark: percentage relative to			\cap
F3.16Closed-lop preset frequencyClosed-lop preset frequencyOOOOF3.17Closed-loop preset frequency holding timeClosed-loop preset frequency holding time0.06000s0.1s0.00Hz0.00Hz0F3.18Revival frequencyThreshold0.00-400.00Hz0.01Hz0.00Hz×F3.19Sleep frequencyBack difference0.00-400.00Hz0.01Hz0.00Hz×F3.20Integral separation plD adjusting threshold0.0-100.0%0.1%100.00F3.21Closed-loop adjusting threshold0.00.0-100.0%0.1%100.00F3.22reservedII0000F3.23reservedII000F3.24reservedII000F3.25failure relay delayRange: 0:no delay timeII0							0
F3.17Closed-loop preset frequency 0.0 -upper limit frequency $0.01Hz$ $0.00Hz$ $0.01Hz$ $0.00Hz$ $0.01Hz$ $0.00Hz$ $0.01Hz$ $0.00Hz$ $0.01Hz$ $0.00Hz$ $0.01Hz$ $0.00Hz$ X F3.17Closed-loop preset frequency holding timeClosed-loop preset frequency holding time $0.0-6000s$ $0.1s$ $0.0s$ X F3.18Revival frequencyThreshold $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ X F3.19Sleep frequencyBack difference $0.00-400.00Hz$ $0.01Hz$ $0.00Hz$ X F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.22reserved $0.0-100.0\%$ 1.1 0 \bigcirc F3.23reserved $0.0-100.0\%$ 1.1 0 \bigcirc F3.24reserved $0.0-100.0\%$ $0.0-100.0\%$ $0.0-100.0\%$ $0.0-100.0\%$ F3.25failure relay delayRange: 0:no delay time $0.0-100.0\%$ $0.0-100.0\%$				value			
frequency <td>F3.16</td> <td>Closed-lop preset</td> <td>Closed-lop preset</td> <td>0</td> <td>0.0111-</td> <td>0.0011-</td> <td>0</td>	F3.16	Closed-lop preset	Closed-lop preset	0	0.0111-	0.0011-	0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		frequency	frequency	0-upper limit frequency	0.01HZ	0.00Hz	0
Inequency timeThreshold $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.18Revival frequencyThreshold $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.19Sleep frequencyBack difference $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting threshold $0:$ positive 1: negative 1 0 \bigcirc F3.22reservedImage: 0: no delay timeImage: 0: no delay timeImage: 0: no delay time \bigcirc F3.25failure relay delayRange: 0: no delay timeImage: 0: no delay time \bigcirc \bigcirc	F3.17	Closed-loop preset	Closed-loop preset	0.0-6000s	0.1s	0.0s	×
timetimetimeIIF3.18Revival frequencyThreshold $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.19Sleep frequencyBack difference $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.22reserved \bigcirc $0:$ positive $1:$ negative 1 0 \bigcirc F3.23reserved \bigcirc \bigcirc \bigcirc \bigcirc F3.24reserved \bigcirc \bigcirc \bigcirc \bigcirc F3.25failure relay delayRange: 0:no delay time \bigcirc \bigcirc \bigcirc		frequency holding	frequency holding				
F3.18Revival frequencyThreshold $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.19Sleep frequencyBack difference $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.22reserved \bigcirc 0.0 -positive $1: negative10\checkmarkF3.23reserved\bigcirc\bigcirc\bigcirc\bigcircF3.24reserved\bigcirc\bigcirc\bigcirc\bigcircF3.25failure relay delayRange: 0:no delay time\bigcirc\bigcirc$		time					
F3.19Sleep frequencyBack difference $0.00-400.00$ Hz 0.01 Hz 0.00 Hz \times F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.22reserved $0:$ positive $1:$ negative 1 0 \checkmark F3.23reserved \bigcirc \bigcirc \bigcirc F3.24reserved \bigcirc \bigcirc \bigcirc F3.25failure relay delayRange: 0:no delay time \bigcirc \bigcirc	F3.18	Revival frequency		0.00-400.00Hz	0.01Hz	0.00Hz	×
F3.20Integral separation PID adjusting threshold $0.0-100.0\%$ 0.1% 100.0 \bigcirc F3.21Closed-loop adjusting characteristic $0:$ positive 1: negative 1 0 \checkmark F3.22reserved \bigcirc \bigcirc \bigcirc \bigcirc F3.23reserved \bigcirc \bigcirc \bigcirc F3.24reserved \bigcirc \bigcirc \bigcirc F3.25failure relay delayRange: 0:no delay time \bigcirc \bigcirc			Back difference				×
PID adjusting threshold0.0-100.0%0.1%100.0F3.21Closed-loop adjusting characteristic0: positive 1: negative10F3.22reservedI00F3.23reservedI00F3.24reservedI00F3.25failure relay delayRange: 0:no delay time00	F3 20	Integral separation					\cap
F3.21 adjusting characteristicClosed-loop adjusting characteristic0: positive 1: negative10×F3.22reserved<	15.20			0.0-100.0%	0.1%	100.0	0
adjusting characteristic0: positive 1: negative10F3.22reserved10F3.23reserved10F3.24reserved10F3.25failure relay delayRange: 0:no delay time0	F3 21						×
characteristic 1: negative F3.22 reserved F3.23 reserved F3.24 reserved F3.25 failure relay delay Range: 0:no delay time	13.21			1	1	0	~
F3.23 reserved O F3.24 reserved O F3.25 failure relay delay Range: 0:no delay time O				1: negative			
F3.24 reserved O F3.25 failure relay delay Range: 0:no delay time O	F3.22	reserved					0
F3.25 failure relay delay Range: 0:no delay time	F3.23	reserved					0
	F3.24	reserved					0
	F3.25	failure relay delay		Range: 0:no delay time			
unic 1.uciay 3s		time		1:delay 5s			0

		F4 –simple P	LC function parameter group			
function code	name	LCD displayed content	set range	unit	-	modif- ication
F4.00	Simple PLC running setting	PLC run setting	LED first bit: 0: no action 1: stop after single circulation 2: keep final value after single circulation 3: consecutive circulation LED second bit: 0: start again from first section 1: continue to run at mid-section frequency LED third bit: PLC run time unit 0: second 1: minuta	1	000	×
F4.01	Section 1 setting	Section 1 setting	 minute 000-322 LED first bit: frequency setting multisection freq. i (i=1~7) freq. determined by F0.00 function code multisection closed-loop provision i (i=1~7) LED second bit: run direction selection forward run reverse run determined by run command LED third bit: Acc/Dec time selection Acc/Dec time 1 Acc/Dec time 3 Acc/Dec time 4 	1	000	0
F4.02	Section 1 run time	Section 1 time	0-6000.0	0.1	10.0	0
F4.03	Section 2 setting	Section 2 setting	000-322	1	000	0
F4.04	Section 2 run time	Section 2 time	0-6000.0	0.1	10.0	0
F4.05	Section 3 setting	Section 3 setting	000-322	1	000	0
F4.06	Section 3 run time	Section 3 time	0-6000.0	0.1	10.0	0
F4.07	Section 4 setting	Section 4 setting	000-322	1	000	0
F4.08	Section 4 run time	Section 4 time	0-6000.0	0.1	10.0	0
F4.09	Section 5 setting	Section 5 setting	000-322	1	000	0
F4.10	Section 5 run time	Section 5 time	0-6000.0	0.1	10.0	0
F4.11	Section 6 setting	Section 6 setting	000-322	1	000	0

EDS2000/EDS2800/EDS2860 series inverter service manual

F4.12	Section 6 run time	Section 6 time	0-6000.0	0.1	10.0	0
F4.13	Section 7 setting	Section 7 setting	000-322	1	000	0
F4.14	Section 7 run time	Section 7 time	0-6000.0	0.1	10.0	0

		F5 –terminal corro	elative function parameter group			
Function		LCD displayed			Factory	modif-
code	name	content	Set range	unit	default	ication
F5.00	Input terminal X1	X1 terminal	0: leave control terminal unused	1	0	×
	function selection	function	1: multisection speed control			
			terminal 1			
			2: multisection speed control			
			terminal 2			
			3: multisection speed control			
			terminal 3			
			4: multisection speed control			
			terminal 4			
			5: external forward run jog control			
			6: external reverse run jog control			
			7: Acc/Dec time option terminal 1			
			8: Acc/Dec time option terminal 2			
			9: external device failure input			
			10: external reset input			
			11: free shutdown input			
			12: external stop-running order			
			13: shutdown DC braking input			
			command DB			
			14: inverter run banned			
			15: frequency increasing control			
			(UP)			
			16: frequency degression control			
			(DOWN)			
			17: Acc/Dec ban command			
			18: three-line run control			
			19: closed-loop ineffective			
			20: PLC ineffective			
			21: simple PLC pause control			
			22: PLC stop status reset			
			23: frequency provision channel			
			option 1			
			24: frequency provision channel			
			option 2			
			25: frequency provision channel			
			option 3			
			26: frequency switched to CCI			
			27: command switched to terminal			

-				-		
			28: run command channel option 1			
			29: run command channel option 2			
			30: reserved			
			31: reserved			
			32: reserved			
			33: swing frequency jump-in			
			34: reserved			
			35: external interruption input			
			36: interior counter reset end			
			37: interior counter triggering end			
			38: pulse frequency input (only			
			effective for X7,X8)			
			39: reserved			
			40: reserved			
			41: reserved			
	Input terminal X2	X2 terminal	Same as above			×
F5.01	F	function				
	Input terminal X3		Same as above			Х
F5.02		function				
		X4 terminal	Same as above			Х
F5.03		function				
		X5 terminal	Same as above			X
F5.04		function				
		X6 terminal	Same as above			×
F5.05	1	function				
		X7 terminal	Same as above			×
F5.06	F	function	Sume as above			~~~
-		X8 terminal	Same as above			×
F5.07	1	function	Same as above			~
F5.08		run mode selection	0: double-line control mode 1	1	0	×
F 5.08	selection	run mode selection	1: double-line control mode 1	1	0	~
	selection		2: three-line control mode 1			
			3: three-line control mode 2			
F5.09	UP/DOWN	UP/DOWN velocity		0.0111-/-	1.00Hz/s	0
F 5.09		UP/DOWN velocity	0.01 - 99.99HZ/S	0.01HZ/S	1.00HZ/S	0
F5.10	velocity	Y1function		1	0	×
F5.10	option that have		0: inverter running(RUN)	1	0	~
		option	1: frequency arriving signal (FAR)			
	output terminal Y1		2: frequency level detect signal			
	output setting		(FDT1) 2 fraguency level detect signal			
			 frequency level detect signal (EDT2) 			
			(FDT2)			
			 overload warning alarm signal (OL) 			
			(OL) 5: output frequency reach high			
			limit (FHL)			
L			6: output frequency reach low			

·						
			limit (FLL)			
			7: inverter lacking voltage blockage			
			shutdown (LU)			
			8: external failure stop-runnin			
			(EXT)			
			9: inverter zero rotate speed running			
			10: PLC running			
			11: simple PLC section running			
			finished			
			12: PLC finish a cycle running			
			13: reserved			
			14: inverter ready to run (RDY)			
			15: inverter failure			
			16: swing frequency high and			
			low limit restriction			
	1		17: interior counter reach final			
			value			
			18: interior counter reach specified			
			value			
			19: set run time arriving			
F5.11	Open circuit	Y2 function	Same as above	1	0	\times
	collector output	option				
	terminal Y2 output					
	setting					
	Frequency arriving	equivalent	0.00-50.00Hz	0.01Hz	5.00Hz	0
F5.12	(FAR) checkout	frequency range				
	scope					
F5.13	FDT1 (frequency	FDT1 electric	0.00-high limit frequency	0.01Hz	10.00Hz	0
	level) electric level	level				
F5.14	FDT1 lag	FDT1 lag	0.00-50.00Hz	0.01Hz	1.00Hz	0
F5.15	FDT2 (frequency	FDT2 electric	0.00-high limit frequency	0.01Hz	10.00Hz	0
	level) electric level	level				
F5.16	FDT2 lag	FDT2 lag	0.00-50.00Hz	0.01Hz	1.00Hz	0
F5.17	Analog output (AO1)	AO1 output	0: output frequency(0-high limit	1	0	0
	selection		frequency)			
			1: output current($0-2 \times rated$			
			current)			
			2: output voltage(0-1.2×load			
			motor rated voltage)			
			3: bus-bar voltage0- 800V)			
			4: PID provision (0.00-10.00V)			
			5: PID feedback (0.00-10.00V)			
F5.18	Analog output (AO2) selection	AO2 output	Same as above	1	0	0
	Analog output	AO1gain	0.50-2.00	0.01	1.00	0
F5.19	(AO1) gain	10 I guili	0.50 2.00	0.01	1.00	0
	(101) galli	1		I		

F5.20	reserved					
F5.21	Analog output (AO2) gain	AO2 gain	0.50-2.00	0.01	1.00	0
F5.22	DO terminal output function selection	Digital output	Same as F5.17	1	0	0
F5.23	DO maximum pulse output frequency	maximum pulse output	0.1-50.0(max. 50KHz) DO maximum pulse output frequency corresponds to max. value choosed by F5.22	0.1KHz	10.0	0
F5.24	Set interior counting value reach provision	Set counting value	09999	1	0	0
F5.25	Specified interior counting value reach provision	Specified counting value	09999	1	0	0

I	F6 group 1—special function p	arameter group for injection molding r	nachine (H	EDS2800)	
Function code	name	description	Min. unit	Factory default	modific- ation
F6.00	Special parameter selection for injection molding machine	 special parameter for injection molding machine ineffective special parameter for injection molding machine effective 	1	0	×
F6.01	combination selection	0: set 1I 1: set 2I 2: 11 × weighting factor+ 21 × weighting factor 3: VI ₁ +11 4: VI ₁ +11+2I 5: MAX{11, 21} 6: MIN{11, 21}	1	2	0
F6.02	External input 1I weighting factor	0.01~1.00	0.01	0.50	0
F6.03	External input 2I weighting factor	0.01~1.00	0.01	0.50	0
F6.04	11 Min. input quantity	0.01~1.00	0.01	0.20	0
F6.05	Frequency corresponding to 11 Min. input quantity	0.00~400.00	0.01	10.00	0
F6.06	11 Max. input quantity	0.01~1.00	0.01	1.00	0
F6.07	Frequency corresponding to 1I Max. input quantity	0.00~400.00	0.01Hz	50.00Hz	0
F6.08	21 Min. input quantity	0.01~1.00	0.01	0.20	0

F6.09	Frequency corresponding to 2I Min. input quantity	0.00~400.00	0.01Hz	10.00Hz	0
F6.10	2I Max. input quantity	0.01~1.00	0.01	1.00	0
F6.11	Frequency corresponding to 2I Max. input quantity	0.00~400.00	0.01Hz	50.00Hz	0
F6.12	Inflexion setting	0: inflexion ineffective1: inflexion effective	1	0	×
F6.13	11 middle inflexion current/voltage 1	F6.04-F6.06	0.01	0.00	0
F6.14	Frequency corresponding to F6.13	0.0-F6.07	0.01Hz	0.00Hz	0
F6.15	11 middle inflexion current/voltage 2	0.0-F6.06	0.01	0.00	0
F6.16	Frequency corresponding to F6.15	0.0-F6.07	0.01Hz	0.00Hz	0
F6.17	2I middle inflexion current/voltage 1	0.0-F6.10	0.01	0.0	0
F6.18	Frequency corresponding to F6.17	0.0-F6.11	0.01Hz	0.00Hz	0
F6.19	2I middle inflexion current/voltage 2	0.0-F6.10	0.01	0.00	0
F6.20	Frequency corresponding to F6.19	0.0-F6.11	0.01Hz	0.00Hz	0

	F6 group 2—constant p	ressure water supply parameter group (EDS2000))	
Function code	name	description	Min. unit	Factory default	modific- ation
F6.00	Sleep delay time	0.0-6000.0s	0.1	0.0	0
F6.01	Revival delay time	0.0-6000.0s	0.1	0.0	0
F6.02	Start-up frequency of first sub-machine	0.00-400.0Hz	0.01	0.00	0
F6.03	Start-up frequency of second sub-mahine	0.00-400.0Hz	0.01	0.00	0
F6.04	Start-up frequency of third sub-machine	0.00-400.0Hz	0.01	0.00	0
F6.05	Stop frequency of first sub-machine	0.00-400.0Hz	0.01	0.00	0
F6.06	Stop frequency of second sub-machine	0.00-400.0Hz	0.01	0.00	0
F6.07	Stop frequency of third sub-machine	0.00-400.0Hz	0.01	0.00	0
F6.08	Start-up delay of	0.0-6000.0s	0.01	0.00	0

EDS2000/EDS2800/EDS2860 series inverter service manual

	sub-machine				
F6.09	stop delay of sub-machine	0.0-6000.0s	0.01	0.00	0
F6.10	Quantity of sub-machine	0-3	1	0	×
F6.11	Automatic switching interval	0000-9999 minutes	1	0000	0
F6.12	Real value of link sub-machine automatic switching	0.0-100.0%	0.1	0.0	0
F6.13	Starting delay of speed regulating motor	0.000-9.999s	1	0000	0
F6.14	Water supply special relay status display	0000-9999	1	0000	*
F6.15	reserved				
F6.16	reserved				
F6.17	reserved				
F6.18	reserved				
F6.19	reserved				
F6.20	reserved				

		F7 –swing frequency	special function parameter group)		
function	name	LCD displayed	setting range	Min.	factory	modific-
code	name	content	setting range	unit	default	ation
F7.00	traverse function selection	traverse function selection	 traverse function not used Swing frequency function 	1	0	×
	selection	selection	used			
F7.01	traverse run mode	Traverse run mode	LED first bit: jump-in mode 0: automatic jump -in mode 1: terminal manual jumpin mode LED second bit: 0: changing traverse amplitude 1: fixed traverse amplitude notice: traverse center frequency input channel set by	1	00	×
F7.02	traverse amplitude	traverse amplitude	F0.00 function parameter 0.0-50.0 (%)	0.1(%)	0.0(%)	0
F7.03	Sudden jumping frequency	Sudden jumping frequency	0.0-50.0 (%)	0.1(%)	0.0(%)	0
F7.04	traverse cycle	traverse cycle	0.1-999.9s	0.1s	10.0s	0
F7.05	Triangle wave risetime	risetime	0.0-98 (%) (traverse cycle)	0.1(%)	50.0(%)	0
F7.06	traverse preset frequency	traverse preset frequency	0.00-400.00Hz	0.01Hz	0.00Hz	0
F7.07	traverse preset frequency latency time	Traverse latency time	0.0—6000s	0.1s	0.0s	0

	F8 -	-frequency provisi	on function parameter group			
function code	name	LCD displayed content	setting range	Min.unit	factory default	modific- ation
F8.00	VCI min. provision	VCI min. provision	0.00-F8.02	0.01V	0.00V	0
F8.01	VCI min. provision corresponding freq.	VCI small freq.	0.00-high limit frequency	0.01Hz	0.00Hz	0
F8.02	VCI max. provision	VCI max. provision	0.00-10.00V	0.01V	10.00V	0
F8.03	VCI max. provision corresponding freq.	VCI big freq.	0.00-high limit frequency	0.01 Hz	50.00Hz	0
F8.04	CCI min. provision	CCI min. provision	0.00-F8.06	0.01V	0.00V	0
F8.05	CCI min. provision corresponding freq.	CCI small freq.	0.00-high limit frequency	0.01 Hz	0.00Hz	0
F8.06	CCI max. provision	CCI max. provision	0.00-10.00V	0.01V	10.00V	0
F8.07	CCI max. provision corresponding freq.	CCI big freq.	0.00-high limit frequency	0.01 Hz	50.00Hz	0
F8.08	YCI min. provision	YCI min. provision	0.00-F8.10	0.01V	0.00V	0
F8.09	YCI min. provision corresponding freq.	YCI small freq.	0.00-high limit frequency	0.01 Hz	0.00 Hz	0
F8.10	YCI max. provision	YCI max. provision	0.00-10.00V	0.01V	10.00V	0
F8.11	YCI max. provision corresponding freq.	YCI big freq.	0.00-high limit frequency	0.01 Hz	50.00Hz	0
F8.12	PULSE max. input pulse	PULSE max. pulse	0.1-50.0K	0.1K	10.0K	0
F8.13	PULSE min. provision	PULSE min. provision	0.0—F8.12(PULSE max. provision)	0.1K	0.0K	0
F8.14	PULSE min. provision corresponding freq.	PULSE small freq.	0.00—high limit frequency	0.01 Hz	0.00 Hz	0
F8.15		PULSE max. provision	F8.13 (PULSE min. provision) -F8.12 (max. output pulse)	0.1K	10.0K	0
F8.16	PULSE max. provision corresponding freq.	PULSE big freq.	0.00—high limit frequency	0.01 Hz	50.00 Hz	0

	F9 –protection correlative function parameter group						
Function	name	LCD displayed	Setting range	Min.unit	factory	modific-	
code	name	content	Setting range	iviiii.uiiit	default	ation	
F9.00	Instantaneous power off	Power off restarting	0.0-10.08	0.1S	0.08	\times	
	restarting latency time	time 0	0 indicates ineffective power				
			off restarting				

F9.01	Failure self-renew times	Failure	0-10	1	0	\times
		self-renew times	0 shows no automatic reset			
			function			
			remark: no automatic reset			
			function for overload and			
			overheat			
	Failure self-renew interval	Failure	0.5-20.08	0.15	5.0S	×
F9.02	i andre sen-tene w mer var	self-renew time	0.5 20.05	0.15	5.05	~
F9.03	Motor overload protection		0: no action	1	1	×
1 7.05	Mode selection	selection	1: inverter close off output	1	1	~
F9.04			20.0-120.0 (%)	0.1(0/)	100.0/8.0	×
F9.04	Motor overload protection		20.0-120.0 (%)	0.1(%)	100.0(%)	~
	coefficient	thermal relay				
F9.05	Overload warning alarm	Overload	20-200 (%)	1(%)	130(%)	0
	checkout level	checkout level				
F9.06	Overload warning alarm	Overload	0.0-20.0s	0.1s	5.0s	0
1 9.00	Delay time	checkout time				
F9.07	Overvoltage stall	Overvoltage stall	0: ban	1	1	×
	selection	selection	1: allow			
	Overvoltage stall	Overvoltage stall	120-150 (%)	1(%)	140(%)	0
F9.08	point	point		()	- (/	
	Automatic current	Automatic	110-200 (%)	1(%)	150(%)	Х
F9.09	limit level	current limit	110 200 (70)	1(70)	150(70)	~
19.09	mint level	level				
E0.10	D D D D D D D D D D		0.00.0011	0.0111./		0
F9.10	Frequency declining	Frequency	0.00-99.99Hz/s	0.01Hz/s	10.00Hz/s	0
	rate during current	declining rate				
	limiting					
F9.11	Automatic current	Automatic	0: automatic current limiting is	1	0	×
	limiting action	current	ineffective during constant			
	selection	limiting action	speed			
			1: automatic current limiting is			
			effective during constant			
			speed			
			remark: always effective during			
			Acc/Dec			
F9.12	protection action	Protection	LED first bit: communication	1	000	×
	selection 1	selection 1	Abnormal action			
			0: alarm and stop running free			
			1: not alarm and continue to run			
			LED second bit: (reserved)			
			LED third bit: E ² PROM abnor-			
			mal action option			
			0: alarm and stop running free			
	ļ		1: not alarm and continue to run			
F9.13	protection action	protection	LED first bit: lacking voltage	1	00	×
	selection 2	selection 2	Failure instruction action selection			
			0: no action			
	1		1: action (regard voltage lack			

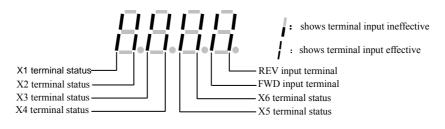
as failure)		
LED second bit: G/P type machine		
0: G type machine 1: P type machine		

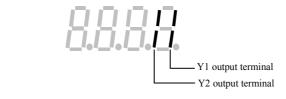
	Fd –fai	lure record fund	ction parameter group			
Function code	name	LCD displayed content	Setting range	Min.unit	factory default	modific- ation
Fd.00	Previous one time failure record	Previous one time failure	Previous one time failure record	1	0	*
Fd.01	Previous two time failure record	Previous two time failure	Previous two time failure record	1	0	*
Fd.02	Previous three time failure record	Previous three time failure	Previous three time failure record	1	0	*
Fd.03	Previous four time failure record	Previous four time failure	Previous four time failure record	1	0	*
Fd.04	Previous five time failure record	Previous five time failure	Previous five time failure record	1	0	*
Fd.05	Previous six time failure record	Previous six time failure	Previous six time failure record	1	0	*
Fd.06	Set freq. of previous failure	failure set freq.	Set freq. of previous failure	0.01Hz	0	*
Fd.07	output freq. of previous failure	Failure output failure	output freq. of previous failure	0.01Hz	0	*
Fd.08	output current of previous failure	Failure current	output current of previous failure	0.1A	0	*
Fd.09	output voltage of previous failure	Failure output voltage	output voltage of previous failure	1V	0	*
Fd.10	DC bus-bar voltage of Previous failure	Failure bus-bar voltage	DC bus-bar voltage of Previous failure	1V	0	*
Fd.11	Load motor speed of Previous failure	Failure motor speed	Load motor speed of Previous failure	1(r/m)	0	*
Fd.12	Module temperature of previous failure	Failure module temperature	Module temperature of Previous failure	1℃	0	*
Fd.13	Input terminal status of previous failure	Failure terminal status	Input terminal status of previous failure		0	*
Fd.14	Accumulative run time of previous failure	Failure run time	Accumulative run time of previous failure		0	*

	FF –password and manufacturer function parameter group					
Function code	name	LCD displayed content	Setting range	min.unit	factory default	Modif-ic ation
FF.00	User password	User password	0000-99999	1	0000	×

EDS2000/EDS2800/EDS2860 series inverter service manual

FF.01	Manufacturer	Manufacturer	0000-99999	1	0000	×
11.01	password	password		1	0000	~
FF.02-	Manufacturer's					~
FF.0X	special parameter					^


		C –supervisio	on function parameter group			
Function code	name	LCD displayed content	description	Min.unit	factory default	Modif- ication
C.00	Set frequency	Set frequency	Current set frequency	0.01HZ		
C.01	Output freq.	Output freq.	Current output freq.	0.01HZ		*
C.02	Output current	Output current	Virtual value of current output current	0.1A		*
C.03	Output voltage	Output voltage	Virtual value of current output voltage	1V		*
C.04	DC bus-bar voltage	bus-bar voltage	Current DC bus-bar voltage	1V		*
C.05	Load motor speed	Load motor speed	Product of output frequency and load motor speed emendation factor	1 (r/m)		*
C.06	Module temperature	Module temperature	IGBT heat sink temperature	1°C		*
C.07	Run time	Run time	Inverter electrification run time	1h		*
C.08	accumulative run time	accumulative time	Inverter accumulative run time	1h		*
C.09	Input terminal status	Input terminal	Switch value input terminal status			*
C.10	output terminal status	output terminal	Switch value output terminal status			*
C.11	Analog input VCI	Analog input VCI	Analog input value of VCI	V		*
C.12	Analog input YCI	Analog input YCI	Analog input value of YCI	V		*
C.13	Analog input CCI	Analog input CCI	Analog input value of CCI	V		*
C.14	Exterior pulse input	Exterior pulse input	Exterior pulse input			*


Factory default supervision parameter C-07~C-14 is hidden, please modify

corresponding value of F2.14, $\,$ F2.15 if need to supervise these parameters.

(1) input terminal status corresponding relation is as follows:

(2) output terminal status corresponding relation is as follows:

6 Detailed function description

Listed column content for parameter function code description in this chapter is as follows:

code	name	Set range or description		Factory default	
6.1 Basic run function parameter group: F0					
F0.00	Frequency in	put channel selection	range: 0~	-9 0	

0: keypad digital potentiometer. Set running frequency by keypad digital potentiometer, reserve set frequency after power off.

1: keypad frequency number setting. Initial set frequency value is F0.01, can change set frequency by changing F0.01 parameter through keypad.

2: terminal UP/DOWN adjust set frequency(stored after power off).

Initial set frequency value is F0.01, and adjust set running frequency by terminal UP/DOWN.

3: serial port provision. Serial port frequency set initial value is F0.01, change set frequency by setting F0.01 through serial port.

4: VCI analog setting(VCI-GND).Frequency setting determined by VCI terminal analog voltage, input voltage range: DC0~10V.

5: CCI analog setting (CCI-GND). Frequency setting determined by CCI terminal analog voltage /current, input range: DC0~10V (CCI jumping wire choose V side), DC: 4~20mA (CCI jumping wire choose A side).

6: YCI analog setting (YCI-GND). Frequency setting determined by YCI terminal analog voltage, input range: DC0~10V (YCI jumping wire choose10V side) or DC0~5V(YCI jumping wire choose 5V side).

7: terminal pulse (PULSE) setting. Frequency set by terminal pulse (only input through X7 or X8, see F5.06~F5.07 definition), input pulse signal spec: voltage range15~30V; frequency range 0~50.0KHz.

8: combination setting. See function parameter F2.09, set frequency by each channel combination setting.

9: terminal UP/DOWN adjust set frequency (not stored after power off)

Initial set frequency value is F0.01, and adjust set running frequency by terminal UP/DOWN.

[h ote			but information is determined by function c channel is 4, 5, 6, 7, please see Section 6.		
	F0.	F0.01 Freq. number setting		range: low limit ~high limit	0.00Hz	
	F0.01 parameter is original set frequency of the inverter when frequency setting					
	F0.01 parameter is original set frequency of the inverter when frequency setting channel is defined as number setting (F0.00=1, 2, 3).					

	5, .	· · ·	
F0.02	Run command channel selection	range: 0, 1, 2	0

0: keypad run frequency command channel. Start and stop the inverter by (RUN), (STOP), (JOG) key on the keypad.

1: terminal run command channel. Start and stop the inverter by exterior control terminal FWD, REV, X1~X8 etc..

2: serial port run command channel. Start and stop the inverter by RS485 or interface.

The inverter can change run command channel by modifying F0.02 during waiting and running, please confirm that modification is allowed during running on the spot.

F0.03	Run direction setting	Range: 0, 1	0		
This Constitution in and a Constitution for the description of a second second					

This function is only effective for keypad and serial port run command channel, ineffective for terminal run command channel.

0:	inverter forward run	1: inverter reverse ru	un
v .	my cr ter for war a r un		

F0.04 Preventing reverse run selection range	ge: 0, 1 0)
--	------------	---

0: inverter reverse run allowed

1: inverter reverse run banned. The inverter will stop outputting if reverse

run command available.

If this function is set to "1", effective for keypad run command channel, terminal run command channel and serial port run command channel.

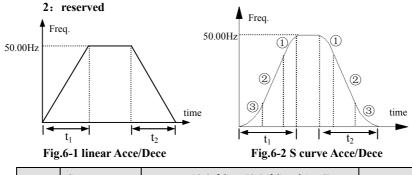
F0.05	Load motor rated freq.	range: 0-high limit freq.	50.00Hz
F0.06	Load motor rated volt.	range: 1-480V	380V

6	1
О	С
~	2

(王

note

F0.07	Load motor rated	range: 0.4–999.9KW	depend on
F0.08	Load motor rated	range: 0.1-999.9A	depend
F0.09	Load motor rated speed	range: 1-9999(r/min)	1440(r/min)


Remark: "depend" means depending on device type in above table.

To let the inverter run safely, please set above parameter function code according to rated data of the motor drived by the inverter.

F0.10	Acc/Dec mode selection	range: 0, 1, 2	0
0:	linear Acc/Dec mode. Output frequency	increase or decreas	e by degrees

according to constant slope, as shown in Fig. 6-1.

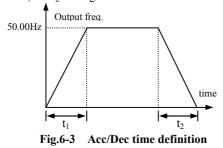
1: S curve Acc/Dec mode. Output frequency increase or decrease by degrees according to S curve, as shown in Fig. 6-2.

F0.11	S curve starting time	range: 10.0(%)−50.0(%) (Acc/Dec time) F0.11+F0.12≤90%)	20.0(%)
F0.12	S curve rising time	range: 10.0(%)−80.0(%) (Acc/Dec time) F0.11+F0.12≤90%)	60.0(%)

F0.11, F0.12 is only effective when S curve Acc/Dec mode (F0.10=1) is selected during Acc/Dec selection, and F0.11+F0.12 \leq 90%.

S curve starting time is shown as Fig. 6-2 (3), slope of output frequency variation increases by degrees from 0.

S curve rising time is shown as Fig.6-2(2), slope of output frequency variation is constant.


S curve ending time is shown as Fig.6-2(1), slope of output frequency variation steps down to 0.

S curve Acc/Dec mode, suitable for starting and stopping elevator, deferent belt, carrier transporter load etc						
F0.13	Acc/Dec time unit	range: 0, 1	0			
This function determines Acc/Dec time unit. 0: second						
1: minute						
(1) This function is effective for all Acc/Dec process except for jog run. (2) To choose second as time unit is recommended.						

F0.14	Acc time 1	range: 0.1-6000.0	20.0
F0.15	Dec time 1	range: 0.1-6000.0	20.0

Accelerating time is defined as time for inverter accelerating from 0Hz to

50.00Hz, see t_1 in Fig.6-3, Dec time is defined as time for inverter decelerating from 50.00Hz to 0Hz, see t_2 in Fig.6-3.

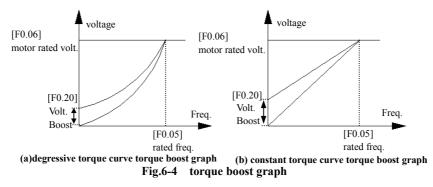
(1) In EDS2000/EDS2800 series inverter 4 kinds of Acc/Dec time are defined in total, here we only define Acc/Dec time 1, Acc/Dec time 2~4 are defined in F2.21~F2.26, please refer to Section 6.3.

(2) Can choose time unit minute or second for Acc/Dec time $1 \sim 4$ by F0.13, factory default is second.

note

F0.16	high limit frequency	range: low limit-400.00Hz	50.00Hz
F0.17	low limit frequency	range: 0.00—high limit	0.00Hz
F0.18 Low limit freq.		range: 0:run at low limit freq.	0
1 0010	run mode	1:stop running	•

The inverter will decrease output frequency gradually in set decelerating time when actual set frequency is lower than low limit frequency, after reaching low limit frequency, the inverter will run at low limit frequency if F0.18 is set to 0; The inverter will reduce output frequency sequentially to zero frequency run if F0.18 is set to 1.


F0.19	Torque boost mode	range: 0: manual	1: automatic	0

0: manual boost. Torque boost voltage is determined completely by parameter F0.20, its characteristic is boost voltage fixed, but the motor is prone to magnetic saturation when lightly loaded.

1: automatic torque boost. Torque boost voltage varies as stator current of the motor changes, bigger stator current corresponds to bigger boost voltage. Boost volt = $\frac{F0.20}{2}$ × motor rated volt × inverter output current

boost voit	$\frac{100}{100}$ \wedge motor rated	$\frac{1}{2 \times \text{inverter rated current}}$	
F0.20	Torque boost	Range: 0.0-20.0(%)	2.0(%)

To improve inverter's low frequency torque characteristic, can carry on boost compensation for output voltage, degressive torque curve and constant torque curve torque boost are separately shown as Fig.6-4a, b.

(1) improper setting to this parameter can cause motor heating or over current protection.

(2) advise the user to adopt manual torque boost and to adjust V/F curve according to motor parameter and usage occasion when driving synchronous motor.

F0.21	V/F curve setting	range: 0~4	0
F0.22	V/F freq. value F1	range: 0.00-F0.24	0.00Hz
F0.23	V/F voltage value V1	range: 0.00-F0.25	0.0(%)
F0.24	V/F freq. value F2	range: F0.22-F0.26	0.00Hz
F0.25	V/F voltage value V2	range: F0.23-F0.27	0.0(%)
F0.26	V/F freq. value F3	range: F0.24-high limit freq.	0.00Hz
F0.27	V/F voltage value V3	range: F0.25-100.0%	0.0(%)

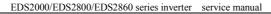
This function code group defines EDS2000/EDS2800 flexible V/F setting mode to satisfy different load characteristic. Can choose 4 kinds of fixed curve and one custom curve according to definition of F0.21.

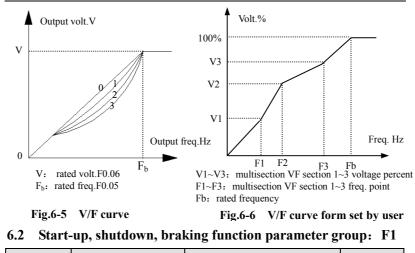
If F0.21=0, V/F curve bears constant torque characteristic; as curve 0 in Fig.6-5.

If F0.21=1, V/F curve bears 2.0 order power degressive torque characteristic; as curve 3 in Fig.6-5.

If F0.21=2, V/F curve bears 1.7 order power degressive torque characteristic; as curve 2 in Fig.6-5.

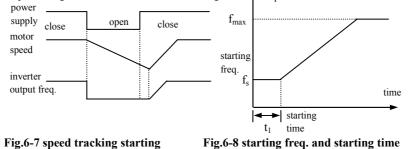
If F0.21=3, V/F curve bears 1.2 order power degressive torque characteristic; as curve 1 in Fig.6-5.


The user can choose 1, 2, 3 V/F curve run mode according to load


characteristic to reach better energy save result while the inverter is driving degressive torque load such as blower and water pump etc..

If F0.21=4 , the user can set V/F curve by himself per setting F0.22-F0.27 parameter.

As shown in Fig.6-6, by setting three inflexion points (V1, F1), (V2, F2), (V3, F3), you can define V/F curve arbitrarily to apply to special load.



F1.00		Sta	rt-	up	run	mode	ran	ge:	0, 1	, 2	0					
0		c				c		TC1						1.		T1 01

0: start from starting frequency. The inverter start according to F1.01 starting frequency and F1.02 starting frequency holding time.

1: first braking then starting. First brake according to DC braking voltage and time (F1.03, F1.04), then start at starting frequency.

2: speed tracking starting. Start-up process is effective to power supply revival after transient stop, external failure reset, starting process after free stop-running when F1.00=2, as shown in Fig.6-7. \uparrow freq. Hz

(1) start-up mode 0: Advise the user to adopt start-up mode 0 in common application occasion and when driving synchronous motor.

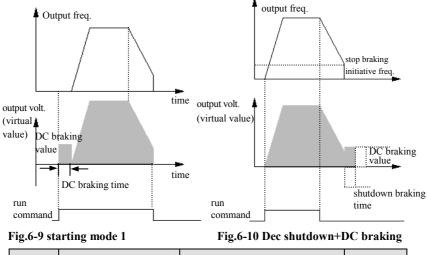
[]

note

(2) start-up mode 1: Be applicable to small inertia load with forward run or reverse run phenomena when the moter doesn't drive any device, for big inertia load, advise not to adopt start-up mode 1.

(3) start-up mode 2: Be applicable to motor starting during free stop-running or starting after transient power off.

F1.01	Starting frequency	range: 0.0-10.00Hz	0.00 Hz	
F1.02	Starting freq. holding time	range: 0.0-20.08	0.08	


Starting frequency means initial frequency at which the inverter start up, as fs shown in Fig.6-8: Starting freq. holding time means consecutive run time during which the inverter run at starting frequency, as t_1 shown in Fig.6-8.

<pre>[]</pre>	Starting frequency is not limited by low limit frequency.

note								
F1.03	DC braking volt. when starting	range: 0-15%)	0(%)					
F1.04	DC braking time when starting	range: 0.0-20.0S	0.08					

When F1.00=1, F1.03, F1.04 is effective, as shown in Fig.6-9.

F1.03 is percentage relative to inverter rated input voltage. Have no DC braking process when starting DC braking time is 0.0.

F1.05Shutdown modeRange: 0, 1, 20

0: Dec shutdown. The inverter reduces output frequency gradually according to set Dec time upon receival of stop command and stops running after frequency is reduced to 0.

1: free shutdown. The inverter stop outputting at once when receiving stop command and the load stops freely according to mechanical inertia.

2: Dec plus DC braking shutdown. The inverter reduces output frequency gradually according to set Dec time upon receival of stop command and start DC braking when F1.06 shutdown braking initiative frequency is reached.

F1.06	Shutdown DC braking initiative frequency	range: 0.0—15.00Hz	3.00Hz
F1.07	Shutdown DC braking time	range: 0.0-20.08	0.08
F1.08	Shutdown DC braking voltage	range: 0-15(%)	0

F1.08 is percentage relative to inverter rated input voltage. Have no DC braking process if stop braking time is 0.0s, as shown in Fig.6-10.

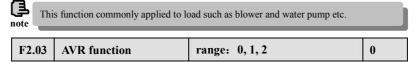
6.3 Auxiliary run function parameter group: F2

F2.00 Analog filtering time constant	range: 0.00-30.008	0.208
--------------------------------------	--------------------	-------

The time constant used when the inverter filter sampled value when frequency is set by exterior analog channel. Can improve the situation by increasing this filtering time constant if connecting wire is long or disturbance is serious which cause unstable set frequency.

Analog filtering time constant must be bigger than F3.10 (sampling cycle), otherwise the system would run unsteadily.

	F2.01	FWD REV run dead-section time	range: 0.0-3600.0S	0.0S	
		ing process of transiting from	• Output freq.		
		un to reverse run or from In to forward run, transition			
i	time duri	ng which the inverter wait at		tin	ne
	zero outp	ut frequency, as t ₁ shown in	→ ←		
	Fig.6-11.			_/	
		Fig.6-11	FWD REV run dead-see	ction tim	e


	0			
F2.02	Automatic energy save run	range: 0, 1	0	

To reach better energy save result, the inverter would detect load current to get the purpose of automatic energy save.

0: no action

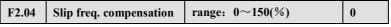
1: action

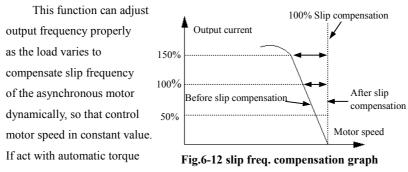
Empty or lightly loaded motor can get the purpose of energy save by detecting load current to adjust output voltage properly. Automatic energy save run is mainly applied to occasion of stable load, speed.

AVR namely automatic voltage adjusting function. Indicate that the inverter

can output constant voltage by AVR function when the inverter input voltage fluctuates.

0: no action


٢Ħ


note

- 1: action all the time
- 2: no action only during Dec
- (1) when input voltage is higher than rated value, under normal situation should set

F2.03=1. When F1.05=0 namely inverter in decelerating shutdown, motor Dec time is short and running current would be bigger. But the motor decrease speed placidly with small run current and long Dec time if choose AVR action all the time.

(2) should set F2.03=0, namely AVR function ineffective when the motor system oscillates which caused by choosing AVR function.

boost function, can get better low speed moment characteristic. As shown in Fig.6-12.

F2.05 Carrier freq. range: 0.7–16.0K Depend on device type
--

Carrier frequency mainly affects motor noise and heat consumption during running.

Relation between carrier frequency and motor noise, current leakage, disturbance is as follows:

Carrier frequency increase(\uparrow), motor noise decrease(\downarrow), motor current leakage increase(\uparrow), disturbance to environment increase(\uparrow);

Carrier frequency decrease (\downarrow), motor noise increase (\uparrow), motor current leakage decrease (\downarrow), disturbance to environment decrease (\downarrow).

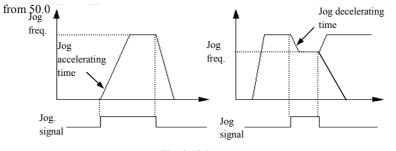
Should decrease carrier frequency properly to reduce heat consumption of the inverter when ambient temperature is high and motor load is heavy. Relation of EDS2000 each type and carrier frequency is as shown in Table 6-1.

Table 0-1 relation table of device type and carrier frequency				
carrier freq. Power	Max. carrier freq. (KHz)	Min. carrier freq (KHz)	factory default (KHz)	
2.2KW	16	0.7	10	
3.7KW	15	0.7	8	
5.5KW	13	0.7	8	
7.5KW	12	0.7	8	
11KW	11.0	0.7	6.0	
15KW	10.0	0.7	6.0	
18.5KW	9.0	0.7	4.7	
22KW	8.0	0.7	4.7	
30KW	7.5	0.7	4.7	
37KW	7.0	0.7	4.7	
45KW	6.0	0.7	4.7	
55KW	5.5	0.7	4.7	
75KW	5.0	0.7	4.7	
90KW	4.0	0.7	4.0	
110KW/132KW	3.5	0.7	3.0	
160KW	3.0	0.7	3.0	
200KW/220KW	2.5	0.7	2.5	
280KW/315KW/350KW/375KW	2.0	0.7	2.0	

Table 6-1 relation table of device type and carrier frequency

(1) To get better control characteristic, suggest that the ratio of carrier frequency to inverter

max. run frequency be not smaller than 36.


(2) Error exists in current displayed value when carrier frequency is small.

F2.06	Jog run frequency	range: 0.10-50.00Hz	5.00Hz
F2.07	Jog Acc time	range: 0.1-60.0S	20.08
F2.08	Jog Dec time	range: 0.1-60.0S	20.0S

Jog frequency has the highest priority. Under any status, the inverter

would transit to run at jog frequency at once according to set jog accelerating, decelerating time as long as jog command is inputted, as shown in Fig.6-13.

Jog accelerating time means time during which the inverter accelerate from 0Hz to 50.00Hz, Jog Dec time means time during which the inverter decelerate

Fig.6-13 jog run

E (1) Keypad, control terminal and serial port can do jog control all.

(2) The inverter will stop according to Dec stop mode after jog run command is withdrawn.

- 0: VCI+CCI 1: VCI-CCI 2: YCI+CCI 3: YCI-CCI 4: VCI+YCI 5: VCI-YCI
- 6: external pulse provision+CCI
- 7: external pulse provision-CCI
- 8: MAX (VCI, YCI)
- 9: MIN (VCI, YCI)
- 10: MAX (YCI, VCI, PULSE)
- 11: MIN (YCI, VCI, PULSE)

76

note

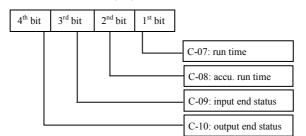
- 12: VCI, YCI any nonzero value effective, VCI preferred
- 13: VCI, CCI any nonzero value effective, VCI preferred
- 14: VCI+YCI (for controlling simple strain)

Here YCI input $0 \sim +10V$ corresponds to frequency -50.00Hz~+50.00Hz, $0 \sim 5V$ corresponds to frequency -50.00 ~ 0 Hz, 5 $\sim 10V$ corresponds to $0 \sim +50.00$ Hz.

- 15: RS485+CCI
- 16: RS485-CCI
- 17: RS485+VCI
- 18: RS485-VCI
- 19: RS485+keypad potentiometer
- 20: RS485- keypad potentiometer
- 21: VCI+ keypad potentiometer
- 22: VCI- keypad potentiometer
- 23: CCI+ keypad potentiometer
- 24: CCI- keypad potentiometer
- 25: reserved
- 26: reserved
- 27: reserved

F2.10	main⊂ inverter communication freq.	range:	100(%)
	provision proportion	0-500(%)	

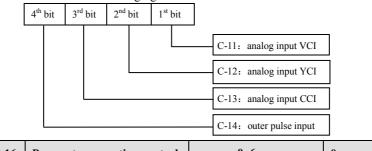
Main&sub inverter communication freq. provision proportion, this parameter


need to be set in sub inverter but not need in main inverter.				
F2.11	Output volt. emendation factor range: 50-150(%) 10			
F2.12	Heat sink temp. emendation factor	range: 50-150(%)	100(%)	
F2.13	Load motor speed emendation factor	range: 50-150(%)	100(%)	
Alterna 2 function of dealers for smart dating display smart in a effect to actual				

Above 3 function codes are for emendating display error, no effect to actual value.

F2.14 LED display control 1	range: 0000-1111	0000
-----------------------------	------------------	------

F2.14 make use of 4 bits of the parameter to set if C.07—C.10 is displayed in parameter, thereinto 0 indicates not displayed, 1 indicates displayed. Set


parameter of 4 bit is as following figure:

Remark: accu. is abbreviation of accumulative.

]	F2.15	LED display control 2	range: 0000-1111	1111
---	-------	-----------------------	------------------	------

F2.15 make use of 4 bit of the parameter to set if C.11—C.14 is displayed in parameter, thereinto 0 indicates not displayed, 1 indicates displayed. Set parameter of 4 bit is as following figure:

F2.16	Parameter operation control	range: 0~6	0

- 0: all parameter allowed to be modified
- 1: except this parameter, all other parameter not allowed to be changed
- 2: except F0.01 and this parameter, all other parameter not allowed to be changed
- 3: to clear history failure record
- 4: renew factory default
- 5: parameter uploading. Namely upload inverter parameter to keypad
- 6: parameter downloading. Namely download keypad parameter to inverter

E2 15		range:	LED 1 st bit:		05
F 2.17	communication deployment		LED 2 nd bit:	0, 1, 2	05

F2.17 make use of 1st bit, 2nd bit to set baud rate and data format of serial communication, thereinto LED 1st bit represents communication baud rate, set value as follows:

- 0: 300BPS
- 1: 600BPS
- 2: 1200BPS
- 3: 2400BPS
- 4: 4800BPS
- 5: 9600BPS
- 6: 19200BPS
- 7: 38400BPS

LED 2nd bit: represents data format, set value as follows:

0:1-8-1 format, no checkout. Namely: 1 bit for starting8 bits for data, 1 bit for stop, no checkout.

1:1-8-1 format, even checkout. Namely: 1 bit for starting, 8 bits for data, 1 bit for stop, even checkout.

2: 1-8-1 format, odd checkout. Namely: 1 bit for starting, 8 bits for data, 1 bit for stop, odd checkout.

F2.18Local addressrange: 0-126, 127 is broadcast address1

This function code is used to identify address of this inverter during serial port communication, 127 is for main inverter during main and sub device communication, 126 is for remote-control keypad.

127 is broadcast address, can only receive and execute broadcast command from upper machine but not respond to upper machine when 127 is set to broadcast address.

|--|

When serial port communication fails and its continuous time exceed set value of this function code, the inverter judge it as communication failure.

The inverter would not detect serial port communication signal, namely this function ineffective when set value is 0.

F2.20	Local response delay time	range: 0-1000ms	5ms
-------	---------------------------	-----------------	-----

Local response delay time represents the time within which the inverter serial port receive and execute command from upper device and then respond to upper

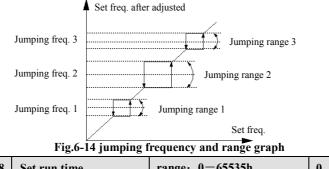
F2.21	Accelerating time 2	range: 0.1-6000.0	20.0
F2.22	Decelerating time 2	range: 0.1-6000.0	20.0
F2.23	Accelerating time 3	range: 0.1-6000.0	20.0
F2.24	Decelerating time 3	range: 0.1-6000.0	20.0
F2.25	Accelerating time 4	range: 0.1-6000.0	20.0
F2.26	Decelerating time 4	range: 0.1-6000.0	20.0

device, this function is just used for setting this delay time.

Can define 3 kinds of accelerating decelerating time and can choose

accelerating decelerating time $1 \sim 4$ during inverter run process by different combination of control terminal, please see definition for function of accelerating decelerating time terminal in F5.00 \sim F5.07.

Accelerating decelerating time 1 is defined in F0.14 and F0.15.					
F2.27	Multi-step freq. 1	range: low limit —high limit	5.00Hz		
F2.28	Multi-step freq. 2	range: low limit — high limit	10.00Hz		
F2.29	Multi-step freq. 3	range: low limit —high limit	20.00Hz		
F2.30	Multi-step freq. 4	range: low limit — high limit	30.00Hz		
F2.31	Multi-step freq. 5	range: low limit —high limit	40.00Hz		
F2.32	Multi-step freq. 6	range: low limit —high limit	45.00Hz		
F2.33	Multi-step freq. 7	range: low limit — high limit	50.00Hz		
F2.34	Multi-step freq. 8	range: low limit — high limit	5.00Hz		
F2.35	Multi-step freq. 9	range: low limit — high limit	10.00Hz		
F2.36	Multi-step freq. 10	range: low limit — high limit	20.00Hz		
F2.37	Multi-step freq. 11	range: low limit — high limit	30.00Hz		
F2.38	Multi-step freq. 12	range: low limit — high limit	40.00Hz		
F2.39	Multi-step freq. 13	range: low limit — high limit	45.00Hz		
F2.40	Multi-step freq. 14	range: low limit — high limit	50.00Hz		
F2.41	Multi-step freq. 15	range: low limit —high limit	50.00Hz		


These set frequency will be used in multi-step speed run mode and simple

PLC run mode, please refer to multi-step speed run terminal function of $F5.00 \sim$ F5.07 and F4 group simple PLC function.

F2.42	Jumping freq. 1	range: 0.00-400.00Hz	0.00Hz
F2.43	Jumping freq. 1 range	range: 0.00-30.00Hz	0.00Hz
F2.44	Jumping freq. 2	range: 0.00-400.00Hz	0.00Hz
F2.45	Jumping freq. 2 range	range: 0.00-30.00Hz	0.00Hz
F2.46	Jumping freq. 3	range: 0.00-400.00Hz	0.00Hz
F2.47	Jumping freq. 3 range	range: 0.00-30.00Hz	0.00Hz

 $F2.42 \sim F2.47$ function is set for keeping inverter output frequency away from resonance frequency of mechanical load.

Inverter set frequency can jump around some frequency point according to mode shown in Fig. 6-14, at most 3 jumping range can be defined.

F2.48	Set run time	range: 0-65535h	0	
F2.49	Run time accumulation	range: 0-65535h	0	
After run accumulative time reach set run time (F2.48), the inverter will				

output indicator signal, please refer to $F5.10 \sim F5.11$ function introduction.

F2.49 denotes accumulative run time of the inverter from leaving factory to now.

6.4 Closed-loop run control parameter group: F3

Analog feedback control system:

Input pressure specified value through VCI port, send 4~20mA feedback value of pressure sensor to inverter CCI input port, make up of analog closed-loop control system by built-in PID adjustor, as shown in Fig.6-15.

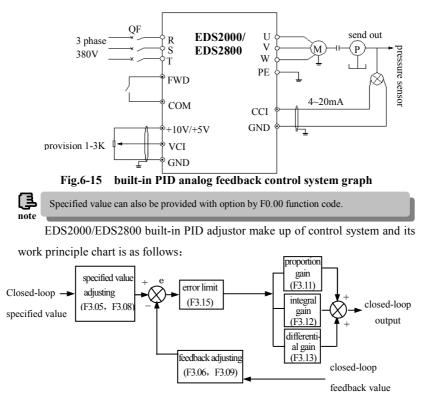


Fig.6-16 PID control principle diagram

In above diagram Kp: proportion gain; Ki integral gain; Kd: differential gain In above Fig.6-16 ,definition of closed-loop specified value, feedback value,

error limit and proportion integral differential parameter is same as that of common PID adjustor parameter, see respectively (F3.01~F3.15) definition, relation of specified value and expected feedback value is as shown in Fig.6-17. Thereinto specified value take 10V as reference and feedback take 20mA as reference.

Specified value adjusting and feedback value adjusting in Fig.6-16 is for confirming corresponding relation and unitive dimension between specified value and feedback value.

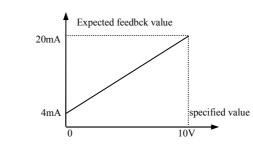


Fig.6-17 specified value and expected feedback value

When the system is determined, basic steps for setting closed-loop parameter are as follows:

(1) determine closed-loop provision and feedback channel(F3.01, F3.02)

(2) need to set relation between closed-loop provision and feedback for analog closed-loop (F3.05~F3.09)

(3) set closed-loop presetting frequency function (F3.16~F3.17)

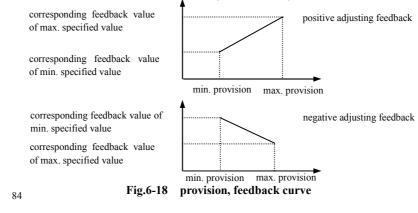
(4) set closed-loop proportion gain, integral gain, differential gain, sampling cycle, error limit (F3.11~F3.15)

F3.00	Closed-loop run control select	ion	range: 0, 1, 2	0	
0:	closed-loop run control ineffect	ive			
1:	1: PID closed-loop run control effective				
2:	reserved				
F3.01	provision channel selection	rang	ge: 0~4	1	
0:	digital voltage provision. Refer	to fun	ction code F3.03		
1:	1: digital pressure provision. Refer to function code F3.04				
2: VCI analog 0–10V voltage provision					
3: CCI analog provision. Can choose 0~10V voltage or 4~20mA current					
provision					
4: keypad potentiometer provision					
F3.02	Feedback channel selection	ran	ge: 0~5	1	
0:	VCI analog input voltage 0–10V				
	CCI analog input				
	VCI+CCI				
3:	VCI-CCI				

4: Min { VCI, CCI } 5: Max { VCI, CCI }

Remark: When choose CCI analog input as current input, current is converted into voltage.

F3.03	Digital voltage setting	range: 0.00-10.00V	0.00V
--------------	-------------------------	--------------------	-------


When F3.01=0, figure provision F3.03 will be as specified value of closed-loop control system directly. Therefore when control closed-loop system through keypad or serial port, can change system specified value by modifying F3.03.

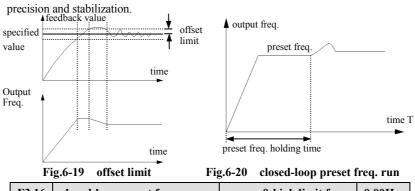
F3.04	Digital pressure setting	range: 0.000-9.999Mpa	0.000Mpa

This parameter is to set digital pressure setting value Only effective when F3.01=1(digital pressure provision)

range: 0.0-max. specified F3.05 min. specified value 0.0(%) value corresponding feedback F3.06 value of min. specified range: 0.0-100.0(%) 0.0(%) value corresponding pressure F3.07 range: 0.000-9.999Mpa 0.000Mpa value of F3.06 max. specified value range: min. specified value F3.08 100.0(%) value -100.0(%) corresponding feedback F3.09 range: 0.0%-100.0(%) 100.0(%) value of max. specified value corresponding pressure F3.10 Range: 0.000-9.999Mpa 0.000Mpa value of F3.09

F3.05, F3.06, F3.08, F3.09 define relation curve of analog closed-loop provision and expected feedback. Their set value is percentage of provision and feedback actual value relative toreference (10V or 20mA).

F3.11	Proportion gain KP	range: 0.000-9.999	0.050
F3.12	Integral gain KI	range: 0.000-9.999	0.0508
F3.13	Differential gain Kd	range: 0.000-9.999	0.000
F3.14	Sampling cycle T	range: 0.01-10.00S	0.108


The more big KP proportion gain is, the more quick the response is, but overbig is prone to bringing surge.

Only applying proportion gain KP adjustment can't eliminate offset completely, can apply integral gain Ki and differential gain to make up of PID control in order to eliminate residual offset. The bigger Ki is, the more quickly the system responds to changing offset, but overbig is prone to bringing surge.

Sampling cycle T is sampling cycle for feedback value, during each sampling cycle PID adjustor calculate for one time, the longer the sampling cycle is, the slower the system responds.

F3.15 Offset limit	range: 0.0-20.0(%)	2.0(%)
--------------------	--------------------	--------

For Max. offset of closed-loop specified value, as shown in Fig.6-19, PID adjustor stops adjusting when feedback value is within this range. To utilize this function reasonably redound to harmonizing the conflict between system output

F3.16	closed-loop preset frequency	range: 0-high limit freq.	0.00Hz
F3.17	closed-loop preset frequency holding time	range: 0.0-6000S	0.18

This function can make closed-loop adjusting enter into stable phase quickly.

After closed-loop run starts, the inverter first accelerates to preset frequency F3.16

in terms of accelerating time, and after running at this frequency for a period of time F3.17, it runs according to closed-loop characteristic. As shown in Fig.6-20.

Set preset freq. and holding time to "0" if closed-loop preset freq. function is not needed.				
F3.18	Revival frequency	range: 0.00-400.00Hz	0.00Hz	
F3.19	Sleep frequency	range: 0.00-400.00Hz	0.00Hz	

Revival frequency define frequency limit from sleep status to work status. If set frequency is bigger than this limit and the situation sustains for a revival delay time, the inverter will enter into work status from sleep status.

Sleep frequency define frequency limit from work status to sleep status. If set frequency is smaller than this limit and the situation sustains for a sleep delay time, the inverter will enter into sleep status from work status.

This function can realize sleep function and make energy save run possible, avoid the inverter staring at threshold frequency frequently.

F3.20	integral separation adjusting threshold	PID	range: 0.0-100.0%	100.0
-------	---	-----	-------------------	-------

PID integral separation, integral don't react when specified value and feedback value are bigger than this limit, only when specified value and feedback value are smaller than or equal to this limit, integral react. Can adjust system response speed by adjusting this parameter.

F3.21	Closed-loop adjusting characteristic	range: 0~1	0
-------	--------------------------------------	------------	---

0: plus action. When provision increases, motor speed increases.

1: minus action. When provision increases, motor speed decreases.

F3.22	reserved		
F3.23	reserved		
F3.24	reserved		
F3.25	Failure relay delay time	range: 0:no delay 1:delay 5s	

6.5 Simple PLC run function parameter group: F4

The user can set by himself the output frequency direction and running time of the inverter during a running cycle by simple PLC function according to spot craft demand, as shown in Fig.6-21.

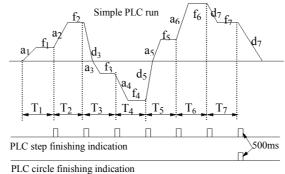


Fig.6-21 simple PLC run

EDS2000 serial inverter simple PLC run function provide 7 kinds of

multi-step speed run mode, see below an example of 7 step speed. In Fig.6-22, $a_1 \sim a_5$, $d_1 \sim d_5$ is accelerating or decelerating time of relative step, set by accelerating decelerating time parameter F0.14, F0.15 and F2.21~F2.26 in total 4 kinds of parameter, $f_1 \sim f_7$, $T_1 \sim T_7$ indicating set frequency and run time set by function code F4.02~F4.14.

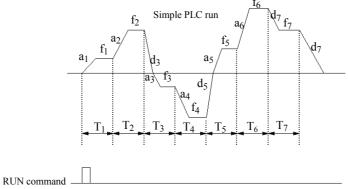
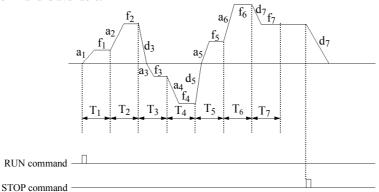
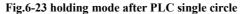
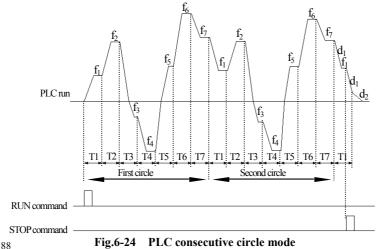


Fig.6-22 stop after PLC single circle

PLC step finishing and circle finishing indication can be realized by outputting 500mS pulse indicator signal through open circuit collector terminal Y1, Y2, detailed function defined by F5.10, F5.11.

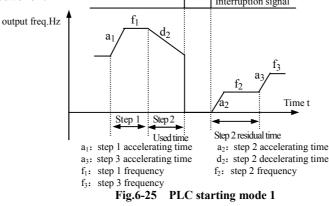

This function code make use of its 1st bit, 2nd bit, 3rd bit to set PLC run mode, PLC rerun mode after interruption, set run time unit, detail as follows:


LED 1st:


0: no action. PLC run mode ineffective.

1: stop after single circle. As shown in Fig.6-22, the inverter stops automatically after finishing a circle, can only start when another run command is available.

2: keep final value after single circle. As shown in Fig.6-23, the inverter keep running according to frequency, direction of final step after finishing a circle, the inverter won't stop according to set decelerating time until the stop command is available.


88

3: consecutive circle. As shown in Fig.6-24, the inverter start next circle automatically after finishing a circle, until there is stop command.

LED 2nd bit:

0: start from first step. Stop during running caused by stop command, failure or power off, after restarting the inverter will run from first step.

1: continue to run from step frequency of interruption moment. When stop during running caused by stop command or failure, the inverter will record current step used time automatically and enter into this step automatically after restarting, continue to run for residual time according to defined frequency of this step, as shown in Fig.6-25. The inverter will rerun from first step after restarting if power off.

LED 3rd bit : PLC run time unit

0: second; 1: minute

This unit is only effective to PLC run step time, for accelerating decelerating time of PLC run period, their unit selection is determined by F0.13.

(1) If run time of PLC segment is set to 0, this segment is ineffective.
 (2) can make PLC process a pause, ineffective, work etc. through terminal, for detail please refer to terminal correlative function parameter group F5.

F4.01	Step 1 setting	range: 000-322	000
F4.02	Step 1 runtime	range: 0-6000.0	10
F4.03	Step 2 setting	range: 000-322	000
F4.04	Step 2 runtime	range: 0-6000.0	10
F4.05	Step 3 setting	range: 000-322	000

F4.06	Step 3 runtime	range: 0-6000.0	10
F4.07	Step 4 setting	range: 000-322	000
F4.08	Step 4 runtime	range: 0-6000.0	10
F4.09	Step 5 setting	range: 000-322	000
F4.10	Step 5 runtime	range: 0-6000.0	10
F4.11	Step 6 setting	range: 000-322	000
F4.12	Step 6 runtime	range: 0-6000.0	10
F4.13	Step 7 setting	range: 000-322	000
F4.14	Step 7 runtime	range: 0-6000.0	10

F4.01~F4.14 utilize LED 1^{st} bit, 2^{nd} bit, 3^{rd} bit to separately define frequency setting, direction and accelerating decelerating time of PLC Run, see following for detail:

LED1st bit: frequency setting

- **0:** multi-step frequency i $i=1\sim7$ is defined by F2.27~F2.41.
- 1: frequency is determined by function code F0.00
- **2:** multi-step closed-loop provision i $i = 1 \sim 7$ is defined by F3.17~F3.23.

LED 2nd bit: run direction selection

- 0: forward run
- 1: reverse run
- 2: determined by run command (FWD,REV)

LED3rd bit: accelerating decelerating time selection

- 0: accelerating decelerating time 1
- 1: accelerating decelerating time 2
- 2: accelerating decelerating time 3
- **3:** accelerating decelerating time 4

6.6 Terminal correlative function parameter group: F5

F5.00	Input terminal X1 function selection	range: 0~41	0
F5.01	Input terminal X2 function selection	range: 0~41	0
F5.02	Input terminal X3 function selection	range: 0~41	0

F5.03	Input terminal X4 function selection	range: 0~41	0
F5.04	Input terminal X5 function selection	range: 0~41	0
F5.05	Input terminal X6 function selection	range: 0~41	0
F5.06	Input terminal X7 function selection	range: 0~41	0
F5.07	Input terminal X8 function selection	range: 0~41	0

Multi-function input terminal $X1 \sim X8$ provides 42 kinds of selection mode for the user, can choose based on spot requirement. For parameter function table please see Table 6-2.

Table 6-2 multifunction input function selection table

	Table 6-2 multifunction input function selection table					
item	corresponding function	item	corresponding function			
0	Leave control terminal unused	1	Multi-step speed control terminal 1			
2	Multi-step speed control terminal 2	3	Multi-step speed control terminal 3			
4	Multi-step speed control terminal 4	5	External forward run jog control			
6	External reverse run jog control	7	Accel/Decel time selecting terminal 1			
8	Accel/Decel time selecting terminal 2	9	External device failure input			
10	External restoration input	11	Free shutdown input (RRS)			
12	External shutdown command	13	Stop DC braking input command DB			
14	Inverter run prohibition	15	Frequency increasing command (UP)			
16	frequency descending command (DOWN)	17	Accel/Decel prohibited command			
18	Three-wire run control	19	Closed-loop ineffective			
20	PLC ineffective	21	Simple PLC pause command			
22	PLC stop status restoration (reset variable of PLC interruption moment, make it restart from first segment)	23	Frequency provision channel selection 1			
24	Frequency provision channel selection 2	25	Frequency provision channel selection 3			
26	Frequency switched to CCI	27	Command switched to terminal			
28	Run command channel selection 1	29	Run command channel selection 2			
30	reserved	31	reserved			
32	reserved	33	Swing frequency run in			
34	reserved	35	External interruption input			
36	interior counter clearing end	37	interior counter triggering end			

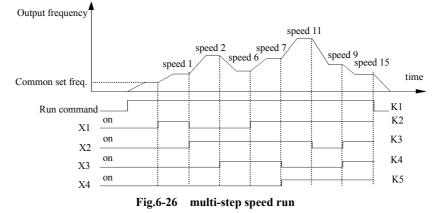
38	Pulse frequency input (only effective for X7,X8)	39	Reserved
40	Reserved	41	Reserved

Now explain listed function in Table 6-2 as follows:

1~4: Multi-step speed control terminal. Can set 15 step speed run

frequency by choosing ON/OFF combination of these function terminal.

K4	K ₃	K ₂	K1	Frequency setting
OFF	OFF	OFF	OFF	Common run frequency
OFF	OFF	OFF	ON	Multi-step frequency 1
OFF	OFF	ON	OFF	Multi-step frequency 2
OFF	OFF	ON	ON	Multi-step frequency 3
OFF	ON	OFF	OFF	Multi-step frequency 4
OFF	ON	OFF	ON	Multi-step frequency 5
OFF	ON	ON	OFF	Multi-step frequency 6
OFF	ON	ON	ON	Multi-step frequency 7
ON	OFF	OFF	OFF	Multi-step frequency 8
ON	OFF	OFF	ON	Multi-step frequency 9
ON	OFF	ON	OFF	Multi-step frequency 10
ON	OFF	ON	ON	Multi-step frequency 11
ON	ON	OFF	OFF	Multi-step frequency 12
ON	ON	OFF	ON	Multi-step frequency 13
ON	ON	ON	OFF	Multi-step frequency 14
ON	ON	ON	ON	Multi-step frequency 15


Table 6-3	multi-sten	speed run	selection table
Table 0-5	munu-sup	specu i un	sciection table

Above multi-step frequency can be used in multi-step speed run and simple

PLC run, please see below an example of multi-step speed run:

We now define control terminal X1, X2, X3, X4 separately as follows:

After set F5.00=1, F5.01=2, F5.02=3, F5.03=4, X1, X2, X3, X4 are used for realizing multi-step run, as shown in Fig.6-26.

In fig.6-27 see an example of terminal run command channel, can make forward, reverse run control by K_5 , K_6 . In Fig.6-26, by different logic combination of K_1 , K_2 , K_3 , K_4 , the inverter can run according to common set frequency or multi-step frequency based on above table.

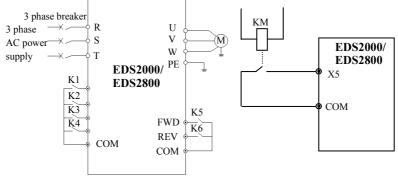


Fig.6-27 multi-step speed run Fig.6-28 exterior device failure always-open input

5~6: external jog run control input JOGF/JOGR.When run command channel is set to terminal run command channel F0.02=1, JOGF is jog forward run, JOGR is jog reverse run, jog operation frequency, jog accelerating decelerating time is defined in F2.06~F2.08 (remark: jog run command channel is determined by F0.02)

7~8: Accel&Decel time terminal selection

Terminal 2	Terminal 1	Accel/Decel time selection		
OFF	OFF	Accel time 1/ Decel time 1		
OFF	ON	Accel time 2/ Decel time 2		
ON	OFF	Accel time 3/ Decel time 3		
ON	ON	Accel time 4/ Decel time 4		

Table 6-4 Accel&Decel time terminal selection logic mode

Can realize selection for Accel&Decel time1~4 by ON/OFF combination of Accel&Decel time terminal.

9: external equipment fault input. Can input fault signal of external

equipment by this terminal to be convenient for the inverter to monitor fault of external equipment. The inverter displays "E0.14", namely external equipment fault alarm after receiving the external equipment fault signal.

10: exterior restoration input. After the fault alarm takes place in the inverter, can restore the inverter through this terminal. Its function is same as function of **RESET** key on the operation panel.

11: free stop input. This function is same as free stop during running defined in F1.05, but it's realized by control terminal to be convenient for long-distance control.

12: exterior stop command. This command is effective to all run command channel, when this function is effective the inverter stops running in mode set by F1.05.

13: DC injection braking input command DB during stop. Implement DC injection braking to the motor during stop by control terminal, in order to realize urgent parking and accurate orientation of the motor. Braking initial frequency, braking current are defined in F1.06~F1.07.

14: inverter run forbiddance. The inverter during running stops freely when this terminal is effective and forbidden to start in waiting status. Mainly applied to occasion needing safe linkage.

15~16: frequency increasing command UP/descending command DOWN. Realize frequency increasing or descending by control terminal, which substitute for keypad to realize long-distance control. Effective during common run if

F0.00=2.Increasing descending speed is set by F5.09.

17: Accel&Decel speed forbidden command. Let the motor not effected

by any foreign signal(except stop command), keep running at current frequency.

Ineffective during normal decelerating shutdown.

18: three-wire run control. Please refer to function description of F5.08 run mode (three-wire run mode).

19: closed-loop ineffective. Realize flexible switch to lower level run mode under closed-loop run status.

 can switch between closed-loop and lower level run mode only during closed-loop run(F3.00=1).

(2) start stop control, direction and Accel&Decel time are subject to setting of corresponding run mode when it's switched to lower level run mode.

20: PLC ineffective. Realize flexible switch to lower level run mode under PLC run status.

(1) can switch between PLC and lower level run mode only during PLC run(F4.00≠0).
(2) start stop control, direction and Accel&Decel time are subject to setting of corresponding run mode when it's switched to lower level run mode.

21: simple PLC pause command. Implement pause control to PLC process during running, run at zero frequency when this terminal is effective, not time for PLC run; after ineffective implement automatic speed tracking start and continue PLC run. For application method please refer to function description of F4.00~F4.14.

22: PLC stop status restoration. Under stop status of PLC run mode, will clear PLC run step, runtime, run frequency etc. recorded when PLC run stops if this terminal is effective, please see F4 group function description.

23~25: terminal frequency provision channel selection. Through ON/OFF combination of frequency provision channel selection terminal 23, 24, 25, can realize frequency provision channel switch shown in Table 6-5. For relation of terminal switch and function code F0.00 setting, that is, latter effective.

frequency provision channel selection end 3	frequency provision channel selection end 2	frequency provision channel selection end 1	frequency provision channel selection
OFF	OFF	OFF	hold freq. setting
OFF	OFF	ON	potentiometer provision
OFF	ON	OFF	keypad number provision
OFF	ON	ON	terminal UP/DOWN adjusting provision
ON	OFF	OFF	serial port provision
ON	OFF	ON	VCI
ON	ON	OFF	CCI
ON	ON	ON	end PULSE provision

Table 6-5 terminal frequency provision channel selection logic mode

26: switch frequency to CCI. Frequency provision channel is switched to CCI provision compulsorily when this function terminal is effective, frequency provision channel come back to previous status when this function terminal is ineffective.

27: command switched to terminal. Run command channel is switched to terminal run command channel compulsorily when this function terminal is effective.

28~29: terminal select run command channel

Table 6-6 run command channel logic mode

Run command channel selection terminal 2	Run command channel selection terminal 1	Run command channel
OFF	OFF	hold run command channel
OFF	ON	keypad run command channel
ON	OFF	end run command channel
ON	ON	serial port run command channel

Can realize control command selection shown in Table 6-6 by ON/OFF combination of run command channel selection terminal. For relation of terminal

switch and function code F0.00 setting, that is, latter effective.

30~32: reserved

33: swing frequency jump-in. When swing frequency start mode is manual jump-in, swing frequency function effective if this terminal effective, see F7 function parameter description.

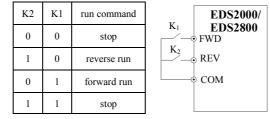
34: reserved

35: exterior interruption input. The inverter close off output and run at zero frequency during running upon receiving exterior interruption signal. The inverter implement automatic speed tracking start-up to resume running once external interruption signal is relieved.

36: interior counter clearing end. To clear built-in counter in the inverter with cooperation of counter triggering signal.

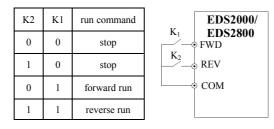
37: interior counter triggering end. Counting pulse input port of built-in

counter, pulse max. frequency: 200Hz, see function code F5.24, F5.25.

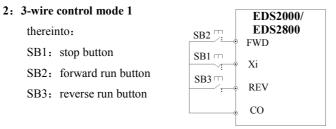

38: pulse frequency input (only effective to X7,X8). Only effective for multifunction input terminal X7, X8, this function terminal receive pulse signal as frequency provision, for relation between inputted signal pulse frequency and set frequency in detail, please refer to F8 group parameter.

- 39: reserved
- 40: reserved
- 41: reserved

F5.08	FWD/REV run mode selection	range: 0-3	0


This parameter defines 4 kinds of exterior terminal control mode for inverter running.

0: 2-wire control mode 1



1: 2-wire conti

Fig.6-29 2-wire run mode 1

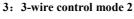


Fig.6-30 2-wire run mode 2

Fig.6-31 3-wire run mode 1

Xi is multifunction input terminal of $X_1 \sim X_8$, here should define its corresponding terminal function as No. 18 "3-wire run control" function.

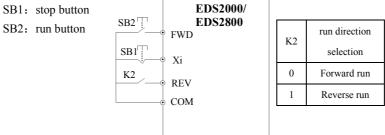


Fig.6-32 3-wire run mode 2

Xi is multifunction input terminal $X_1 \sim X_8$, here should define its corresponding terminal function as No. 18 "3-wire run control" function.

The inverter restores after failure and start at once if run command channel selecting terminal and terminal FWD/REV is effective during warning alarm shutdown.

F5.09	UP/ D W N speed	range: 0.01-99.99Hz/S	1.00 Hz/S
98			

This function code defines varying rate of the set frequency when it's modified by UP/DOWN terminal.

F5.10	Open collector output terminal Y1 output setting	range: 0~19	0
F5.11	Open collector output terminal Y1 output setting	range: 0~19	0

Y1, Y2 open collector output terminal, Table 6-7 shows option of above 2

function parameter, choosing same output terminal function repeatedly is allowed.

Table 6-7 output terminal function selection table

item	corresponding function	item	corresponding function
0	Inverter running signal (RUN)	1	Frequency arriving signal (FAR)
2	Frequency level detecting signal (FDT1)	3	Frequency level detecting signal (FDT2)
4	Overload warning signal (OL)	5	Output Freq. reach high limit (FHL)
6	Output Freq. reach low limit (FLL)	7	Inverter stops for lacking voltage blockage (LU)
8	Stop for exterior failure (EXT)	9	Inverter zero speed running
10	In PLC run process	11	Simple PLC segment run finished
12	PLC finish one cycle run	13	reserved
14	Inverter is ready for run (RDY)	15	Inverter failure
16	Swing Freq. high&low limit restriction	17	Interior counter final value arrive
18	Interior counter specified value arrive	19	Set runtime arrive

Now introduce function listed in Table 6-7 as follows:

0: inverter during running (RUN). The inverter is in run status, output indicator signal.

1: frequency arriving signal (FAR). Refer to function description of F5.12.

2: Frequency level detecting signal (FDT1). Refer to function description of F5.13~F5.14.

3: Frequency level detecting signal (FDT2). Refer to function description of F5.15~F5.16.

4: overload warning signal (OL). Inverter output current exceed F9.05 overload detect level and time exceed F9.06 overload detect time, output indicator signal.

5: output frequency reach high limit (FHL). When set frequency≥high limit frequency and run frequency reach high limit frequency, output indicator signal.

6: output frequency reach low limit(FLL). When set frequency ≤low limit frequency and run frequency reach low limit frequency, output indicator signal.

7: Inverter stops for lacking voltage blockage (LU). When the inverter is running, LED displays "P.OFF" and output indicator signal if DC bus-bar voltage is lower than limitative level.

8: stop for exterior failure (EXT). When the inverter give the alarm (E014) and stops for exterior failure, output indicator signal.

9: inverter zero speed running. When the inverter output zero frequency but in run status, output indicator signal.

10: In PLC run process

11: Simple PLC segment run finished. After simple PLC current segment run is finished, output indicator signal(single pulse signal, width 500ms).

12: PLC finish one cycle run

13: reserved

14: Inverter is ready for run (RDY). If this signal is effective, shows that bus-bar voltage is normal and run prohibition terminal is ineffective, the inverter can receive start-up command.

15: Inverter fault. If failure takes place when the inverter is running, the inverter output indicator signal.

16: Swing freq. high&low limit restriction. After choosing swing frequency function, if frequency fluctuant range based on center frequency of swing frequency is above high limit frequency F0.16 or under low limit frequency F0.17, 100

the inverter will output indicator signal, as shown in Fig. 6-33.

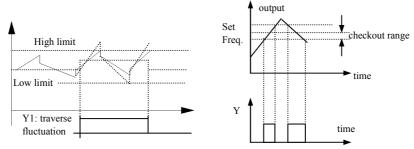


Fig.6-33 swing freq. range restriction Fig.6-34 freq. arriving signal output

17: Interior counter final value arrive

18: Interior counter specified value arrive

17~18 please refer to function description of F5.24~F5.25.

19: Set runtime arrive. When accumulative runtime of the inverter (F2.49) reach set runtime(F2.48), output indicator signal.

F5.12 Freq. arriving(FAR)detect range range:		Freq. arriving(FAR)detect range	range: 0.00-50.00Hz	5.00Hz	
	This parameter is supplementary definition to No. 1 function in Table 6-7.As				

shown in Fig.6-34, when output frequency of the inverter is within high&low detect range of set frequency, output pulse signal.

F5.13	FDT1 (freq. level) electric level	range: 0.00-high limit frequency	10.00Hz	
F5.14	FDT1 lag	range: 0.00-50.00Hz	1.00Hz	
F5.15	FDT2 (freq. level) electric level	range: 0.00—high limit frequency	10.00Hz	
F5.16	FDT2 lag	range: 0.00-50.00Hz	1.00Hz	
F5.1	3~F5.14 is supplementary	Output freq.	T	
definition to No.2 function in FDT1 electric				
Table 6-7, while F5.15~F5.16 is				
supplementary definition to No.3				
function in Table 6-7. Usage of both				
is identical, below take F5.13~F5.14 for time				
an examp	le. When output frequency exe	need L	-	
the set frequency(FDT1 electric level), output indicator signal, till output				

frequency descend to be some frequency(FDT1 electric level-FDT1 lag) lower than FDT1 electric level, as shown in Fig.6-35.

F5.17	Analog output (AO1) selection	range: 0-5	0
F5.18	Analog output (AO2) selection	range: 0-5	0

0: output frequency (0-high limit frequency)

- 1: output current $(0-2 \times \text{rated current})$
- 2: output voltage $(0-1.2 \times \text{load motor rated voltage})$
- 3: bus-bar voltage (0-800V)
- 4: PD provision (0.00-10.00V)
- 5: PD feedback (0.00-10.00V)

F5.19	Analog output (AO1) gain	range: 0.50-2.00	1.00
F5.20	reserved	reserved	
F5.21	Analog output (AO2) gain	range: 0.50-2.00	1.00

For AO1 and AO2 analog output, the user can modify display measuring

range or emend meter head error by adjusting output gain if necessary.

This function makes real-time effect to analog output when it's being modified.					
F5.22DO terminal output function selectionrange: 0~50					
0: output frequency (0-high limit frequency)					
1: output current $(0-2 \times \text{rated current})$					
2: output voltage $(0-1.2 \times \text{load motor rated voltage})$					
3: bus-bar voltage (0-800V)					
4: PD provision (0.00-10.00V)					
5: PD feedback (0.00-10.00V)					
F5.23 DO max. pulse output freq. range: 0.1-50.0(max. 50KHz) 10.00					
DO	port max. output pulse from	equency corre	esponds to max	imum value	

optioned by F5.22, for example 0: output frequency, then max. Output pulse

frequency corresponds to high limit frequency.

F5.24	Set interior count number arriving provision	range: 09999	0
F5.25	Specified interior count number arriving provision	range: 09999	0

F5.24, F5.25 is supplementary definition to No. 17, 18 function in Table 6-7.

Set count number provision, shows that when some number of pulse are inputted to Xi(count triggering signal input function terminal), Yi (open collector Output terminal) output a indicator signal.

As shown in Fig.6-36, Y1 output an indicator signal when the 8th pulse is inputted to Xi. Here F5.24=8.

Specified count number provision, shows that when some number of pulse are inputted to Xi, Y2 output a indicator signal, till set count number is reached.

As shown in Fig.6-36, Y2 start to output an indicator signal when the 5th pulse is inputted to Xi. Until set count number 8 is reached. Here F5.25=5. Specified count number is ineffective when it is bigger than set count number.

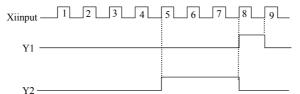


Fig.6-36 set count number and specified count number provision

6.7 Special parameter for injection molding machine and

constant pressure water supply parameter

6.7.1 Special parameter for injection molding machine: F6 (EDS2800)

F6.00 Injection molding machine special parameter selection range: 0–1	0	
---	---	--

0: Injection molding machine special parameter ineffective

1: Injection molding machine special parameter effective

F6.01	Selection combination	range: 0-6	2
0:	channel 1I sets frequency.		

1: channel 2I sets frequency.

2: combination of 1I and 2I sets frequency. Set frequency= $11 \times [S-1]+21 \times [S-2]$.

When parameter F6.01 is set to 2, namely sets frequency by combination of 1I and 2I:

3: VI₁+1I

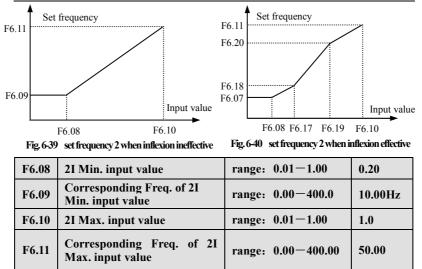

4: VI₁+1I+2I

5: MAX{11, 2I}

6: MIN{11, 21}

Set frequency=frequency set singly by channel 11 \times F6.02+ frequency set singly by channel 21 \times F6.03.

For setting frequency singly by each channel, please see Fig. 6-37 and Fig. 6-40.


When F6.01=2, i.e., frequency is set by combination of 1I and 2I:

Set frequency=frequency set singly by channel 1I×F6.02+ frequency set singly by channel 2I×F6.03, frequency solely set by each channel is as shown in Fig. 6-37 and Fig. 6-40.

F6.08	2I Min. input value	range: 0.01-1.00	0.20
F6.09	Corresponding Freq. of 2I Min. input value	range: 0.00-400.00	10.00
F6.10	2I Max. input value	range: 0.01-1.00	1.00
F6.11	Corresponding Freq. of 2I Max. input value	range: 0.01-400.00	50.00

When set F6.01 to 0, namely let 2I set frequency.

When parameter F6.12 is set to 0, namely inflexion is set to be ineffective, set frequency of the inverter is decided completely by parameters F6.04~F6.07, as shown in Fig. 6-37. When parameter F6.12 is set to 1, namely inflexion effective, here set frequency is as shown in Fig. 6-38.

When set F6.01 to 1, namely let 2I set frequency.

When parameter F6.12 is set to 0, namely inflexion is set to be ineffective, set frequency of the inverter is decided completely by parameters $F6.08 \sim F6.11$, as shown in Fig. 6-40. When parameter F6.12 is set to 1, namely inflexion effective, here set frequency is as shown in Fig. 6-39.

F6.12 Inflexion setting	range: 0, 1	0
-------------------------	-------------	---

0: inflexion ineffective

1: inflexion effective

F6.13	11 middle inflexion current/voltage 1	range: 0.00-F6.06	0.0
F6.14	Corresponding frequency of F6.13	range: 0.0—F6.07	0.0
F6.15	11 middle inflexion current/voltage 2	range: 0.0-F6.06	0.0
F6.16	Corresponding frequency of F6.15	range: 0.0-F6.07	0.0
F6.17	2I middle inflexion current/voltage 1	range: 0.0-F6.10	0.0
F6.18	Corresponding frequency of F6.17	range: 0.0-F6.11	0.0
F6.19	2I middle inflexion current/voltage 2	range: 0.0-F6.10	0.0
F6.20	Corresponding frequency of F6.19	range: 0.0-F6.11	0.0

6.7.2 Constant pressure water supply parameter group:F6 (EDS2000)

This parameter is used for setting holding time in sleep status. EDS2000 will stop automatically if EDS2000 output frequency is smaller than sleep frequency and holding time is longer than sleep delay time set by this parameter.

F6.01	Revival delay time	range:	0.0-6000.0s	0.0
This parameter is used for setting holding time in revival status.				
F6.02	start-up freq. of the 1 st su	b-motor	range: 0.00-400.0	Hz 0.00

This parameter set the start-up frequency. Start-up holding time counter start counting when EDS2000 output frequency exceeds value of (F6.02+1Hz) and no other sub-motor is running. The 1st sub-motor start up when time set by parameter F6.08 passed and output frequency is still bigger than value of (F6.02-1Hz).

After the 1st sub-motor starts up, decrement of EDS2000 output frequency is F6.02-F6.05.

|--|

This parameter set the start-up frequency. Start-up holding time counter start counting when EDS2000 output frequency exceed value of (F6.03+1Hz) and there is one sub-motor which is running. The 2^{nd} sub-motor start up when time set by parameter F6.08 passed and output frequency is still bigger than value of (F6.03-1Hz).

After the 2^{nd} sub-motor starts up, decrement of EDS2000 output frequency is F6.03-F6.06.

F6.04 start-up freq. of the 3 rd sub-motor	range: 0.00-400.0Hz	0.00
---	---------------------	------

This parameter set the start-up frequency. Start-up holding time counter start counting when EDS2000 output frequency exceed value of (F6.04+1Hz) and there are two sub-motors which are running. The 3^{rd} sub-motor start up when time set by parameter F6.08 passed and output frequency is still bigger than value of (F6.04-1Hz).

After the 3rd sub-motor starts up, decrement of EDS2000 output frequency is F6.04-F6.07.

F6.05	Stop freq. for the 1 st sub-motor	range: 0.00-400.0Hz	0.00
-------	--	---------------------	------

This parameter set a low limit frequency. Stop holding time counter start counting when EDS2000 output frequency is smaller than value of (F6.05-1Hz) and there is one sub-motor which is running. The 1^{st} sub-motor stops when time set by parameter F6.09 passed and output frequency is still smaller than value of (F6.05+1Hz).

After the 1st sub-motor stops, increment of EDS2000 output frequency is (F6.02-F6.05).

This parameter set a low limit frequency. Stop holding time counter start counting when EDS2000 output frequency is smaller than value of (F6.06-1Hz) and there are 2 sub-motors which are running. The 2^{nd} sub-motor stops when time set by parameter F6.09 passed and output frequency is still smaller than value of (F6.06+1Hz).

After the 2nd sub-motor stop, increment of EDS2000 output frequency is (F6.03-F6.06).

F6.07	Stop Freq. for the 3 rd sub-motor	range: 0.00-400.0Hz	0.00
-------	--	---------------------	------

This parameter set a low limit frequency. Stop holding time counter start counting when EDS2000 output frequency is smaller than value of (F6.07-1Hz) and there are 3 sub-motors which are running. The 3^{rd} sub-motor stops when time set by parameter F6.09 passed and output frequency is still smaller than value of (F6.07+1Hz).

After the 3rd sub-motor stop, increment of EDS2000 output frequency is (F6.04-F6.07).

F

F6.02<F6.03<F6.04, F6.05<F6.06<F6.07, F6.02>F6.05, F6.03>F6.06, F6.03>F6.03.

F6.08	start-up holding time of sub-motor	range: 0.0-6000.0s	0.00
This parameter sets start-up holding time of sub-motor.			
F6.09	stop holding time of sub-motor	range: 0.0-6000.0s	0.00

This parameter sets stop holding time of sub-motor.

F6.09quantity of sub-motorrange: 0.0-6000.0s0.00	F6.09	quantity of sub-motor	range: 0.0-6000.0s	0.00
--	-------	-----------------------	--------------------	------

This parameter sets quantity of sub-motor. Can modify this parameter only when EDS2000 stops.

F6.11	automatic switch interval	range: 000 0 9999minute	0000

This parameter sets automatic switch function interval, for more information about automatic switch please see parameter F6.12.

If set 0h00min, will close automatic switch function.

A	1
---	---

This time only includes EDS2000 runtime.	

F6.12	Linkage actual value of sub-motor	range: 0.0—100.0%	0.0
	automatic switch		

This parameter sets a percentage, based on this parameter can work out the output frequency utmost of automatic switch logic.

Allowed output freq. of automatic switch = $\frac{F6.12}{\frac{100\%}{1+F6.10}}$ *max. freq.

Motor start-up frequency is changed if there is one automatic switch interval from previous automatic switch and output frequency is lower than result educed from above formula.

Change start-up order when following conditions are fulfilled:

1. EDS2000 output frequency lower than 39Hz=25%/(100%/(1+2))*52Hz;

2. There's one automatic switch interval from previous automatic switch;

Execute automatic switch function when above 2 conditions are fulfilled at the same time:

- 1. All motors stop;
- 2. Start-up order changed;
- 3. Contactor connecting speed regulating motor and EDS2000 opened;
- 4. Wait for setting time by F6.13;
- 5. Speed regulating motor supply power, normal constant pressure water

supply logic running starts;

start-up order changed as follows:

the 1^{st} start-up: the 1^{st} motor, the 2^{nd} motor, the 3^{rd} motor the 2^{nd} start-up: the 2^{nd} motor, the 3^{rd} motor, the 1^{st} motor the 3^{rd} start-up: the 3^{rd} motor, the 1^{st} motor, the 2^{nd} motor

hereinafter analogise in the sameway.

Can't change start-up order by a single external signal.

Switch when the inverter is in stop status (namely, sleep function is effective) if automatic switch level is 0 and automatic switch interval passed.

After this parameter is set, should apply above formula to checking if interrelated frequency output value is within allowed range ,namely between min. frequency and max frequency. Otherwise it's impossible to realize automatic switch function.

Can cancel automatic switch logic by setting parameter F6.11 to 0.

Set value does not delay start-up of constant speed motor (direct industory frequency connecting). Function of holding time is as follows:

- 1. Contactor connecting high-speed motor and EDS2000 switched on (output by a relay);
- 2. Waiting for constant pressure water supply start-up;
- 3. Speed regulating motor supply power, normal constant pressure water supply operate automatically.

If there is \mathbf{Y} / Δ starter assembled for the motor, should set constant voltage water supply start-up delay time and it must be longer than set time of \mathbf{Y} / Δ starter; after the motor is started up by EDS2000 relay output, there must be enough time to make \mathbf{Y} / Δ starter finish \mathbf{Y} / Δ transform.

This parameter shows relay status of water feeder and its value should be transformed to binary system when automatic switch is ineffective.

F6.15	reserved	
F6.16	reserved	
F6.17	reserved	
F6.18	reserved	
F6.19	reserved	
F6.20	reserved	

6.8 traverse special function parameter group: F7

F7.00traverse function selectionrange: 0, 10
--

0: traverse function ineffective

1: traverse function effective

F7.01	traverse run mode	range: 000 0 - 5111	0000
LED 1 st 1 ^t to the second sec			

LED 1st bit: jump-in mode

0: automatic jump-in mode. After start-up run at traverse preset frequency

for a period of time, then enter into traverse operation automatically.

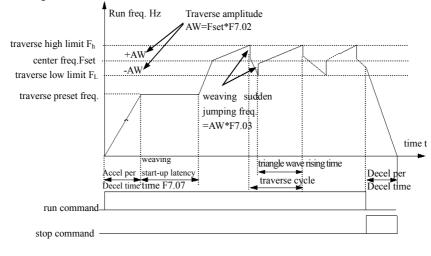
1: terminal manual run mode. When set the multifunction terminal Xi (Xi=X1~X8)to function 33 and it's effective, enter into traverse state; quit traverse state if ineffective and run frequency is at traverse preset frequency.

LED 2nd bit:

0: changing amplitude. Amplitude AW varies with center frequency, for its changing rate please see F7.02 definition.

1: fixed amplitude. Amplitude AW is determined by high limit frequency and F7.02.

Traverse center frequency input setting channel is set by F0.00 function.					
F7.02	traverse amplitude	range: 0.0-50.0(%)	0.0(%)		
changing amplitude:AW=center frequency×F7.02					
fixed amplitude: AW=high limit frequency×F7.02					
Traverse run frequency is restricted by high limit, low limit frequency; if set improperly, abnormal traverse operaion arise.					


F7.03	Sudden jumping freq.		• -	
As shown in Fig.6-41.If this parameter is set to 0, no jumping frequency.				luency.
F7.04	traverse cycle	verse cycle range: 0.1–999.98 10		
Whole time for a cycle including traverse rising, descending process.				
F7.05	F7.05 Triangle wave range: 0.0-98.0(%) (traverse cycle) 50.0			50.0(%)

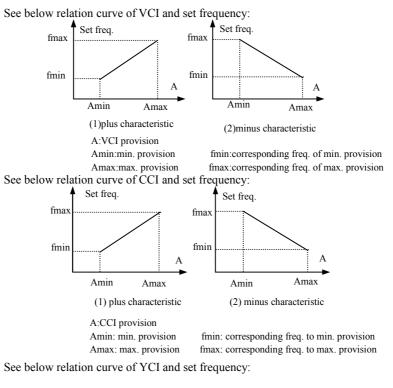
Define runtime of traverse rising segment= $F7.04 \times F7.05$ (s), runtime of descending segment = $F7.04 \times (1-F7.05)$ (s). Please refer to description in Fig.6-41

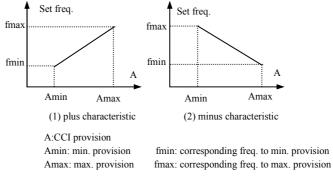
F7.06	Traverse preset frequency	range: 0.00-400.00Hz	0.00Hz
F7.07	Traverse preset frequency latency time	range: 0.0-6000S	0.08

F7.06 is used for defining inverter run frequency before entering into traverse operation.

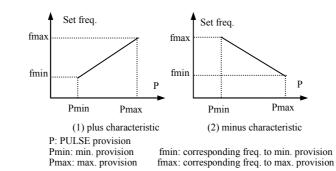
When automatic start-up mode is optioned, F7.07 is used for setting holding time running at traverse preset frequency before enter into traverse operation; When manual start-up mode is optioned, F7.07 setting is ineffective. Please see description in Fig.6-41.

Fig. 6-41 Traverse


	1 1 1		
F8.00	VCI minimum provision	range: 0.00-F8.02	0.0V
F8.01	Corresponding freq. to VCI minimum provision	range: 0.00—high limit frequency	0.00Hz
F8.02	VCI max. provision	range: 0.00-10.00V	10.0V
F8.03	Corresponding freq. to VCI maximum provision	range: 0.00—high limit frequency	50.00Hz
F8.04	CCI minimum provision	range: 0.00-F8.06	0.00V
F8.05	Corresponding freq. to CCI minimum provision	range: 0.00—high limit frequency	0.00Hz
F8.06	CCI max. provision	range: 0.00-10.00V (V side) /4-20mA	10.00V
F8.07	Corresponding freq. to CCI max. provision	range: 0.00—high limit frequency	50.00Hz
F8.08	YCI minimum provision	range: 0.00-F8.10	0.00V
F8.09	Corresponding freq. to YCI minimum provision	range: 0.00—high limit frequency	0.00Hz
F8.10	YCI max. provision	range: 0.00-10.00V/5V	10.00V
F8.11	Corresponding freq. to YCI max. provision	range: 0.00—high limit frequency	50.00Hz


6.9 Frequency provision function parameter group:

F8.12	PULSE max. pulse input	range: 0.1-50.0K	10.0K
F8.13	PULSE minimum provision	range: 0.0-F8.15(PULSE max. provision)	0.0K
F8.14	Corresponding freq. to PULSE min. provision	range: 0.00—high limit frequency	0.00Hz
F8.15	PULSE max. provision	range: F8.13(PULSE min. provision)—F8.12(max. input pulse)	10.0K
F8.16	Corresponding freq. to PULSE max. provision	range: 0.00—high limit frequency	50.00Hz


F2.00 sets the analog channel filtering time constant, to filter input signal, the more long filtering time is, the more great anti-jamming ability is, but response speed descend; the more short filtering time is, the more fast the inverter

See below relation curve of PULSE and set frequency:

6.10 Protection function parameter: F9

F9.	00	restart waiting time after	range: 0.0-10.0S	0.05
F 9.00	transient power off	range. 0.0 10.00	0.05	

If F9.00=0, restart function after transient power off is ineffective.

If transient power off takes place in power network (namely, inverter LED displays P.oFF), the inverter will start up automatically in speed checking restart mode when set waiting time(set by F9.00) passed after power supply resume normal. The inverter wouldn't start up even if run command is inputted in restart waiting time and would relieve speed checking restart state if stop command is inputted.

F9.01	failure self-restoration times	range: 0-10	0
F9.02	failure self-restoration interval	range: 0.5-20.08	5.08

During run process, failure will take place accidently due to load fluctuation and the inverter will cut off output, here failure self-restoration function can be applied in order to let the device continue to run. During self-restoration, the inverter will try to resume running in speed checking restart mode but stop outputting and failure protected if the inverter can't resume running successfully within set times. Self-restoration function will be shut down if failure self-restoration times is set to 0.

 To use failure self-restoration function must take device allowance and no essential failure in the inverter as preconditions.

(2) Self-restoration function is ineffective to failure protection caused by overload and over heat.

F9.03	Motor overload protection mode selection	range: 0, 1	1
place in t	he inverter.		

0: no action. No motor overload protection characteristic (apply with caution), here the inverter have no overload protection for load motor;

1: inverter cut off output at once. The inverter cut off output and motor stop freely when overload, overheat take place.

F9.04	motor overload protection	range: 20.0-120.0(%)	100.0(%)
17.04	coefficient	range: 20.0-120.0(70)	100.0(70)

This parameter sets sensibility of the inverter implementing thermal relay protection to load motor, can implement correct heat protection to the motor by setting this value when output current value of load motor don't match rated current of the inverter, as shown in Fig.6-42.

Value of this parameter can be determined by following formula:

 $[F9.04] = \frac{\text{motor rated current}}{\text{inverter rated output current}} \times 100$

The inverter will lose thermal relay protection function when a piece of inverter drive multiple motors in parallel. Please assemble heat protection relay at input side of each motor to protect them effectively.

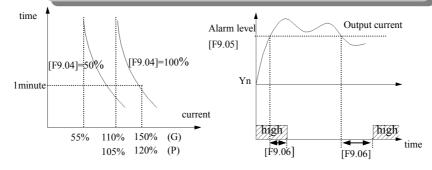


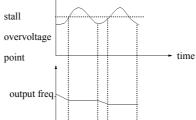
Fig.6-42 electronic thermal relay protection Fig.6-43 overload alarm

F9.05	overload alarm checkout level	range: 20-200(%)	130(%)
F9.06	overload alarm delay time	range: 0.0-20.0S	5.08

If output current exceeds electric level set by parameter F9.05 continuously, open collector outputs effective signal(Y1 or Y2 terminal, refer to Fig.6-43 and

interrelated description of parameter F5.10, F5.11) after delay time set by F9.06 passed.

F9.07	Over-voltage stall selection	range: 0, 1	1
F9.08	Stall over-voltage point	range: 120-150(%)	140(%)


0: banned

1: allowed

Actual descending rate of motor speed may be lower than that of output frequency due to effect from load inertia when the inverter is in decelerating run process, here the motor will feed electric energy back to inverter which will make DC bus-bar voltage of the inverter increase, over-voltage protection will takes

place if not take steps.

Over-voltage stall protectionstallfunction, indicates that output frequency
of the inverter stops descending if bus-barover
pointvoltage detected during run process exceed
stall voltage point defined by F9.08out

(relative to standard bus-bar voltage) and **Fig.6-44** over-voltage stall function the inverter continue to implement decelerating run when bus-bar voltage detected

again is lower than stall over-voltage point. As show in Fig. 6-44.

F9.09	automatic current limiting level	range: 110-200(%)	150(%)
F9.10	frequency descending rate during current limiting	range: 0.00—99.99Hz / S	0.00Hz/S
F9.11	automatic current limiting action selection	range: 0, 1	0

By automatic current limiting function the inverter can limit load current not to exceed automatic current limiting level set by F9.09 to avoid tripping out for failure caused by rushing current. This function is especially suitable for some biggish inertia or acutely changing load occasion.

Automatic current limiting (F9.09) defines current threshold value of automatic current limiting action, its value is the percentage relative to inverter rated current.

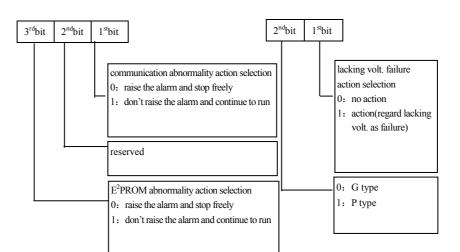
Frequency descending rate during current limiting (F9.10) defines adjusting rate to output frequency during automatic current limiting action.

If frequency descending rate during automatic current limiting F9.10 is too small, inverter isn't easy to get rid of automatic current limiting state which may cause overload failure finally; If descending rate F9.10 is too big, the inverter may be in generating state for long time which will cause overvoltage protection.

Automatic current limiting function is effective in accelerating decelerating state and whether it's effective in constant speed run state is determined by automatic current limiting action selection (F9.11).

F9.11=0 indicates that automatic current limiting is ineffective during constant speed running;

F9.11=1 indicates that automatic current limiting is effective during constant speed running;


Output frequency may varies during automatic current limiting action, so automatic current limiting function is not suitable for occasion demanding stable output frequency during constant speed run.

F9.12	protecting action selection 1	range: LED 1 st bit: 0, 1 LED 2 nd bit: 0, 1 LED 3 rd bit: 0, 1	000
F9.13	protecting action selection 2	range: LED 1 st bit: 0,1 LED 2 nd bit: 0,1	00

The inverter can keep running stably in some abnormal state by setting protecting action selection (F9.12 and F9.13) in order to screen failure alarm and stop.

F9.12 defines protection action selection for communication unwonted and E^2 PROM unwonted.

F9.13 defines indicating action selection for low voltage failure.

Remark: Need to modify F0.07 and F0.08 except for modifying 2^{nd} bit of F9.13 when change G type to P type, for example, to modify 11KWG to15KWP, need to change 2^{nd} bit of F9.13 to 1 and set F0.07=15.0, F0.08=33.0.

Please choose protection action selection function with caution, must choose correctly after reason of the failure is confirmed, otherwise may cause accident range extended, personnel and property damaged.

6.11 Failure record function parameter: Fd

Fd.00	previous one failure record	range:	0~23	0
Fd.01	previous two failure record	range:	0~23	0
Fd.02	previous three failure record	range:	0~23	0
Fd.03	previous four failure record	range:	0~23	0
Fd.04	previous five failure record	range:	0~23	0
Fd.05	previous six failure record	range:	0~23	0

0: no failure

1-23: failure E0.01-E0.23, please see chapter 7 for specified failure type

Fd.06	Set freq. at previous failure	range: 0-high limit	0
Fd.07	Output freq. at previous failure	range: 0-high limit	0
Fd.08	output current at previous failure	range: 0-999.9A	0
Fd.09	output volt. at previous failure	range: 0-999V	0
Fd.10	DC bus-bar vlot. at previous failure	range: 0~800V	0
Fd.11	Load motor speed at previous failure	range: 0~9999	0
Fd.12	Module temp. at previous failure	range: 0~100	0
Fd.13	Input end state at previous failure		0
Fd.14	Accu. runtime at previous failure	range: 0~65535h	0

6.12 Code and manufacturer function parameter: FF

FF.00	user password	range:	0000-99999	1
-------	---------------	--------	------------	---

User password setting function is used for prohibiting unauthorized personnel from consulting and modifying function parameter.

Set this function code to 0000 when user password function isn't wanted.

First input 4 bits number as user password and press **ENTER** key to confirm, then the password will come into effect at once.

Password modification:

Enter into password verification state by pressing Key, after inputting primary 4 bits password parameter editing state is available, choose FF.00(here FF.00=0000), input new password and press Key to confirm, then the password come into effect at once.

Please keep the password you set without fail, in case the password is missing please consult the manufacturer.

FF.01manufacturer passwordrange:0000-999990000
--

Setting function for the manufacturer, user need not modify it.

7 Troubleshooting

7.1 Failure and countermeasure

Possible failure types in EDS2000/EDS2800 are shown in Table 7-1 and failure code is from E001 to E023. Some failure code is reserved for intelligent automatic diagnosis function which will be executed continuously in future. When failure takes place in the inverter, the user should check according to note of this table first and record failure phenomena detailedly. Please contact our after-sale service and technical support Department or agent in your local place when technical service is needed.

	Tuble	7-1 Tanure type and the c	ounter measure
failure code	failure type	possible reason	countermeasure
E001	overcurrent	Accelerating time is too short	Prolong accelerating time
	during accelerating process	Improper V/F curve	Adjust V/F curve setting, adjust manual torque boost or change to automatic torque boost
		Restart rotating motor	Set speed checking restart function
		Low power source voltage	Check input power supply
		Too small power of the inverter	Choose inverter with high-power
E002	overcurrent	Decelerating time is too short	Prolong decelerating time
	during decelerating process	Have potential energy load or big Inertia load	Increase braking power of external energy consumption braking subassembly
		Power of inverter is a bit small	Choose inverter with high-power
E003	overcurrent during constant speed process	Load change suddenly or Have unwonted phenomena	Check or reduce break of the load
		Accel/Decel time is set to too short	Prolong accelerating decelerating time properly
		low power source voltage	Check input power supply
		Power of inverter is a bit small	Choose inverter with high-power
E004	overvoltage	Unwonted input voltage	Check input power supply

 Table 7-1
 failure type and the countermeasure

	during	Accel time is set to too short	Prolong accelerating time properly
	accelerating process	Restart rotating motor	Set speed checking restart function
E005	overvoltage	Decelerating time is too short	Prolong decelerating time
	during	Have potential energy load or big	Increase braking power of external
	decelerating	inertia load	energy consumption braking
	process		subassembly
E006	Overvoltage	Unwonted input voltage	Check input power supply
	during constant	Accel/Decel time is set to too	Prolong accelerating decelerating
	speed process	short	time properly
		Input voltage change abnormally	Assemble reactor
		Load inertia is a bit big	Use energy consumption
			subassembly
E007	control power	Unwonted input voltage	Check input power supply or look for
	supply		service
	overvoltage		
E008		Accel time is set to too short	Prolong accelerating time
		DC injection braking is too big	Reduce DC injection braking
	Inverter		current, prolong braking time
	overload	improper V/F curve	Adjust V/F curve and torque boost
		Restart rotating motor	Set speed checking restart function
		power source voltage is too low	check power source voltage
		Load is too big	Choose inverter with high-power
E009		improper V/F curve	Adjust V/F curve and torque boost
		power source voltage is too low	check power source voltage
		General motor run at low speed	Can choose frequency conversion
	Motor overload	with big load	motor for long time low speed run
	intotor overloud	motor overload protection factor	to set motor overload protection
		set incorrectly	factor correctly
		motor blocked up or load change	Check the load
		too suddenly and quickly	
		Ain moth blooked	To clear air-path or improve
E010	inverter over	Air-path blocked	to clear all-path of improve

			
		Ambient temperature is too high	Improve ventilation condition, lower
			carrier frequency
		Fan damaged	Replace the fan
E011	reserved	reserved	reserved
E012	reserved	reserved	reserved
E013	Inverting	Transient overcurrent of the	Refer to countermeasure for
	module	inverter	overcurrent
	protection	phase to phase short circuit or	wiring again
		earthing short circuit of output 3	
		phase	
		Air-path blocked or fan damaged	To clear air-path or replace the fan
		Ambient temperature is too high	Lower ambient temperature
		Connecting wire or insert on	Check and connect the wire again
		control board loose	
		Unwonted current wave caused	Check wiring
		by missing output phase etc.	
		Assistant power supply damaged	Look for service from manufacturer
		and drive voltage lacking	or agent
		Unwonted control board	Look for service from manufacturer
			or agent
E014	external device	use sudden stop key STOP in	Look up operation mode
	failure	non-keypad run mode	
		Use sudden stop key STOP under condition of stall	Set running parameter correctly
		Sudden stop terminal for external	Open external failure terminal after
		failure closed	external failure is settled
E015	current detecting circuit	Connecting wire or insert on control board loose	Check and connect the wire again
	failure	Assistant power supply damaged	Look for service from manufacturer or agent
		Honeywell component damaged	Look for service from manufacturer or agent
		Unwonted amplifying circuit	Look for service from manufacturer or agent

E016	RS485	Baud rate set improperly	set Baud rate properly				
	communication	Serial port communication error	press STOP RESET key to reset, look for				
	failure		service				
		Failure warning parameter set	Modify F2.19, F2.20 and F9.12				
		improperly					
		Upper device doesn't work	Check if upper device work and wiring				
			is correct				
E017	reserved	reserved	reserved				
E018	reserved	reserved	reserved				
E019	Lacking voltage	Lacking voltage	check spot input voltage				
	failure						
E020	System	Serious disturbance	Reset by pressing RESET key or				
	disturbance		Add mains filter at power supply				
			input side				
		Main control DSP read and write	Reset by the key-press, look for				
		wrongly	service				
E021	reserved	reserved	reserved				
E022	reserved	reserved	reserved				
E023	E ² PROM read	Mistake take place when read or	Reset by pressing				
	and write	write control parameter	Look for service from manufacturer				
	wrongly		or agent				
POFF	Lacking voltage	Lacking voltage	check spot input voltage				
	failure						

7.2 Failure record lookup

This series inverter can record latest 6 failure code and inverter run parameter of the last failure, to search these informations can redound to finding out reason of the failure.

Failure information is all stored in Fd group parameter, please enter into Fd group parameter to see about information by referring to keypad operation method.

EDS2000/EDS2800/EDS2860 series inverter service manual

code	content	code	Content
Fd.00	previous one failure record	Fd.08	output current at previous failure
Fd.01	previous two failure record	Fd.09	output volt. at previous failure
Fd.02	previous three failure record	Fd.10	DC bus-bar vlot. at previous failure
Fd.03	previous four failure record	Fd.11	load motor speed at previous failure
Fd.04	previous five failure record	Fd.12	module temp. at previous failure
Fd.05	previous six failure record	Fd.13	input end state at previous failure
Fd.06	set freq. at previous failure	Fd.14	Accu. runtime at previous failure
Fd.07	output freq. at previous failure	—	—

7.3 Failure reset

(1) Before reset you must find out reason of failure downright and eliminate it, otherwise may cause permanent damage to the inverter.

- (2) If can't reset or failure takes place again after resetting, should look for reason and continuous resetting will damage the inverter.
- (3) Reset should take place 5 minutes after overload, overheat protection action.

To resume normal running when failure takes place in the inverter, you can choose following any kind of operation:

(1) Set any one terminal of X1~X8 to external RESET input (F5.00~F5.07=10),

open it after connected to COM.

(2) When failure code is displayed, press (STOP) key after restoration is confirmed.

(3) Cut off power supply.

8 Maintenance

8.1 Routine maintenance

When you use ESD2000 series you must assemble and operate it according to demand listed in this «service manual» strictly. During run state, temperature, humidity, vibration and aging parts may affect it. To avoid this, it is recommended to perform routine inspections.

р	eriod	Inspection	Inspection content	Criterion
daily	periodic	item	inspection content	
		Run state	(1)output current	(1) within range of rated value
\checkmark			(2)output voltage	(2) within range of rated value
		parameter	(3)inside temp.	(3)temp. increment $< 35^{\circ}C$
,		Cooling	(1)installing ambient	(1)good ventilation, unblocked air-path
\checkmark		system	(2)local fan	(2)rotate normally without abnormal noise
\checkmark		Motor	(1)heating	(1)no abnormality
v		Witten	(2)noise	(2)even
			(1) vibration, heating	(1)vibration balanced, proper wind temp.
	\checkmark	Inverter	(2)noise	(2) without abnormal sound
			(3)fixation of lead, terminal	(3)fixed screw don't loose
~		Run	(1)temperature, humidity	(1)-10°C ~+40°C 40°C ~50°C used in lower volume or execute compulsory heat dissipating
		ambient	(2)dust, water and leakage	(2)no water leakage imprint, no dust
			(3)gas	(3)no peculiar smell

Table 8-1 Daily inspection items

Recommend to inspect with following instrument:

Input voltage: electric voltmeter; output voltage: rectifying voltmeter; input output current: pincers ammeter.

8.2 Inspection and replacement of damageable parts

Some component parts in the inverter will be abraded or bear descending performance for long-term usage, to assure that the inverter can run stably and reliably, it is recommended to perform defending maintenance and replace

corresponding parts if necessary.

(1) cooling fan

Abnormal noise, even oscillation may take place if the fan have wearing bearing, aging blade, here replacement of the fan should be considered.

(2) filter electrolyte capacitance

When frequent-changing load causes increasing pulsant current and aging electrolyte under high ambient temperature, the electrolyte capacitance may be damaged and here should replace it.

8.3 Repair guarantee

- (1) Within 18 months from purchasing date, if failure caused by inverter itself takes place under normal conservation and usage, we will provide free repair service. We will take some upkeep if out of the repaire day.
- (2) We will take some upkeep if one of following situations takes place within period of repair guarantee.
- a. If did not use the inverter according to «service manual» strictly or did not use it under ambient demanded in «service manual», which cause failure.
- b. Failure caused by applying the inverter to non-normal function;
- c. Failure caused by self-repair, refit which is not already allowed;
- d. Damage caused by bad keeping, falling down from high place or other extrinsic factor after purchasing the inverter;
- e. Failure caused by natural disaster or its reason such as unwonted voltage, thunderbolt, water fog, fire, salt corroding, gas corroding, earthquake and storm etc.;
- f. Make bold to tear up product logo (such as: nameplate etc.); Body serial number don't accord with that in repair guarantee card.
- (3) We calculate service fee based on actual cost, which is subject to contract if anv
- (4) You can contact the agent and also our company directly if you have questions.

(E) Our company will also provide lifetime repair service with fee for inverter which is not within period of repair guarantee.

126

note

8.4 Storage

The user must pay attention to following points for temporary storage and long-term storage after purchasing the inverter:

- (1) Avoid storing the inverter in high temperature, moist place and place of dust, metal powder and assure good ventilation.
- (2) Longtime storage will cause electrolyte capacitance of low quality, so must assure that it's electrified for one time within 2 years and electrification time is not shorter than 5 hours and input voltage must be increased to rated value gradually by voltage adjustor.

9 Fitting parts

9.1 LCD keypad

Type: EN-KB2

Language: English

Outline is as shown in Fig.9-1

EN-KB1 keypad and EN-KB2 LCD keypad all can realize quick copy of parameter.

Interface configuration of EN-KB2 keypad: as shown in Fig.9-2, it has 2 parts which are main display area and operation description:

Main display area: display and explain current state parameter corresponding to LED displayed content;

Operation description: description of displayed content

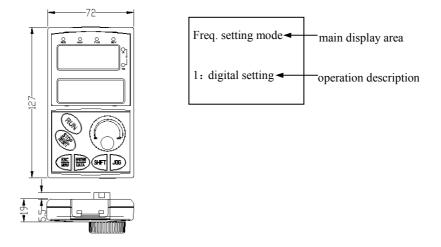
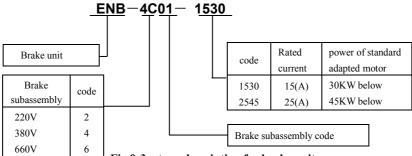



Fig.9-1 EN-KB2 LCD keypad Fig.9-2 EN-KB2 LCD display interface 9.2 Brake subassembly

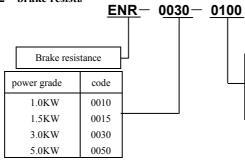

9.2.1 Brake unit

Fig.9-3 type description for brake unit

For motor of 45KW above, you can connect multiple brake units in parallel (at most 10 brake units can be connected in parallel) to brake.

9.2.2 brake resista

code	resistance
0400	40 Ω
0200	20 Ω
0100	10 Ω

Fig.9-4 type description for brake resistance

0 0 0	C *
9.2.3	configuration
1.2.5	connguiation

 Table 9-1
 brake subassembly configuration

Motor rated power (KW)	Brake resistance type quantity	e and	Use ratio (%)	Brake torque (%)	Brake unit type quantity	and
11	ENR-0010-0500	1	10	100	ENR-4C01-1530	1
15	ENR-0015-0400	1	10	100	ENR-4C01-1530	1
18.5	ENR-0050-0320	1	10	100	ENR-4C01-1530	1
22	ENR-0050-0272	1	10	100	ENR-4C01-1530	1
30	ENR-0050-0200	1	10	100	ENR-4C01-1530	1
37	ENR-0100-0160	1	10	100	ENR-4C01-2545	1

EDS2000/EDS2800/EDS2860 series inverter service manual

45	ENR-0100-0136	1	10	100	ENR-4C01-2545	1
55	ENR-0100-0200	2	10	100	ENR-4C01-2545	2
75	ENR-0100-0136	2	10	100	ENR-4C01-2545	2
90	ENR-0100-0200	3	10	100	ENR-4C01-2545	3
110	ENR-0100-0200	3	10	100	ENR-4C01-2545	3
132	ENR-0100-0136	4	10	100	ENR-4C01-2545	4
160	ENR-0100-0136	4	10	100	ENR-4C01-2545	4
200	ENR-0100-0136	5	10	100	ENR-4C01-2545	5
220	ENR-0100-0136	5	10	100	ENR-4C01-2545	5
250	ENR-0100-0136	6	10	100	ENR-4C01-2545	6
280	ENR-0100-0136	7	10	100	ENR-4C01-2545	7
315	ENR-0100-0136	8	10	100	ENR-4C01-2545	8

9.2.4 brake unit outline and assembling dimension

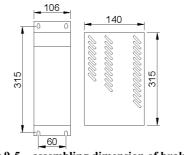


Fig.9-5 assembling dimension of brake unit

Table 9-2brake unit parameters

spec	outline	Rated brake current	Max. brake current	Fixing hole dimension	end	weight (Kg)	wiring (mm ²)
ENB-4CO1-1530	D	15A	45A	Ф6	M4	3.6	4-6
ENB-4CO1-2545	Fig.9-5	25A	60A	Ф6	M4	3.6	4-6

9.2.5 brake resistance outline and dimension

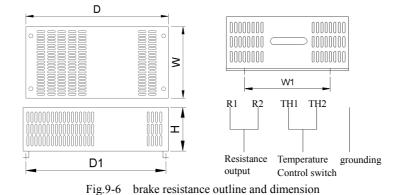


 Table 9-3
 brake resistance dimension parameter

	power		(dimensi			wire	1		
spec	(KW)	W	D	Н	D1	W1	end	weight	(mm ²)	combination
ENR	1	250	500	125	475	200	M4	5.3	4	1.0KW*1
	2	250	500	125	475	200	M4	6.5	4	1.0KW*2
	3	280	500	140	475	240	M5	7.8	4	1.5KW*2
	4.5	340	600	140	585	280	M5	12.0	4	1.5KW*3
	6	340	600	140	580	280	M5	14.0	6	1.5KW*4
	8	410	700	140	685	340	M6	16.5	6	2.0KW*4
	10	410	700	140	685	340	M6	18.5	6	2.5KW*4

9.3 Communication subassembly

9.3.1 Long-distance operation key board

Type: EN-KB3 (without crystal)

EN-KB4 (with crystal) as shown in Fig.9-7

Maximum electric distance from local keypad EN-KB1 and EN-KB2 to inverter is 2m.

RS485 communication mode is adopted between inverter and long-distance keypad EN-KB3 and EN-KB4, only a four-core cable is needed between them and maximum electric distance can reach 1000m. They communicate with each other in main-auxiliary mode, namely take long-distance keypad as main device and inverter as auxiliary one. Connecting wire end is fixed by common screw which is

easy to maintain.

This series of inverter support usage of local keypad and long-distance keypad at the same time, no priority order, both can operate the inverter synchronously.

Following function can be realized by long-distance keypad: (1) Can control run, stop, jog, failure restoration, changing set frequency modifying function parameter and run direction of auxiliary device. (1) Can identify auxiliary device type and monitor run frequency, set frequency

output voltage, output current, analog closed loop feedback, analog closed loop setting and exterior counting value of auxiliary device.

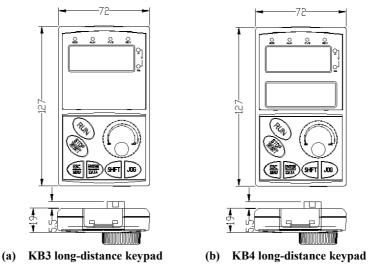
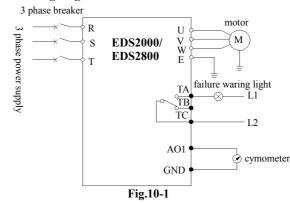


Fig.9-7 long-distance keypad

9.3.2 Communication cable

(1) long-distance keypad communication cable

Type: EN-LC0030 (3.0m)

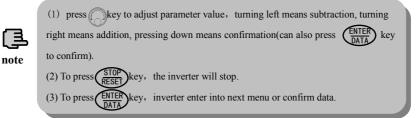

Used for connecting between long-distance keypad and inverter.

Remark: 1m, 2m, 3m, 5m, 10m, 15m are standard deployment for our company's inverter, it's needed to subscribe for the cable if it exceeds 15m.

10 Examples

10.1 Common speed regulation running

10.1.1 Basic wiring diagram


10.1.2 Set following basic parameter:

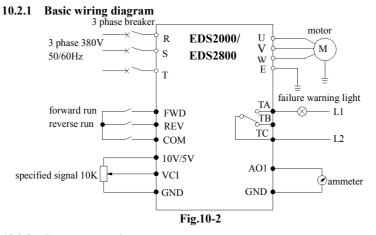
(1) set parameter F0.05-F0.09 according to rated value of the motor

(2) set F0.00 parameter to 0, choose keypad digital potentiometer to set frequency.

(3) set F0.02 parameter to 0, choose keypad to control start-up stop.

(4) use F0.03 parameter to set run direction.

10.1.3 Realized function


- realize stepless speed regulation to the motor, use keypad to control start/stop and keypad digital potentiometer to adjust frequency.
- (2) bear failure warning function.
- (3) connect with cymometer, which indicates output frequency of the inverter.

10.1.4 Application field

Used for common speed regulation field, such as: transportation machine, china

machine, baccy machine, metallurgy machine etc.

10.2 Terminal control running

10.2.2 Parameter setting

- (1) set parameter F0.05-F0.09 according to rated value of the motor
- (2) set F0.00 parameter to 4~6 to choose VCI, CCI, YCI accordingly, can accept frequency set signal within 0~10V.
- (3) set F0.02 parameter to 1, to choose terminal run command channel.

(1) if F5.08=0,namely 2 wire control mode 1: FWD and COM are closed, moter is in forward run; REV and COM are closed, motor is in reverse run; FWD, REV and COM are closed or opened together, the inverter stop.
(2) set frequency is specified through VCI analog channel.

10.2.3 Realized function

(1) control forward run/reverse run of the motor by external on-off quantum.

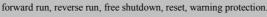
(2) control speed of the motor by $0 \sim 10V$ signal.

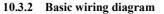
(3) bear failure warning and output current indication function.

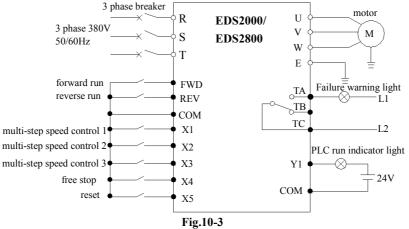
10.2.4 Application field

Used in field where need long-distance control to start/stop of the motor such as blower, food, chemical machine, packing machine, transportation machine etc.

10.3 Multi-step speed control running


10.3.1 Parameter setting


- (1) set parameter F0.05-F0.09 according to rated value of the inverter.
- (2) set F0.02 parameter to 1, to choose terminal run command channel.
- (3) F2.27-F2.41: multi-step speed frequency setting.
- (4) F5.00-F5.05 set multi-step speed terminal control function.


(1) If F5.08=0,namely 2 wire control mode 1: FWD and COM are closed, moter is in forward run; REV and COM are closed, motor is in reverse run; FWD, REV and COM are closed or opened together, the inverter stop. (2)If any one or more terminal of X1, X2, X3 and COM are closed together, the inverter will run according to multi-step speed frequency determined by X1, X2, X3

(multi-step speed frequency set value are determined by F2.27-F2.41).Can realize manual control and automatic control for multiple frequency, and also control for

10.3.3 Realized function

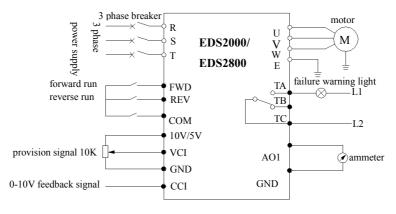
(1) make use of external on-off quantum signal to control start/stop of the motor.

- (2) make use of external on-off quantum signal to make the motor run at set frequency.
- (3) bear free shutdown and reset function by utilizing external on-off quantum

signal.

(4) bear warning alarm and PLC run indication function.

10.3.4 Application field:


Applied in field where need frequent multi-speed adjustment to motor speed such as toughened glass, weaving, paper making, chemical etc..

10.4 Closed-loop control system

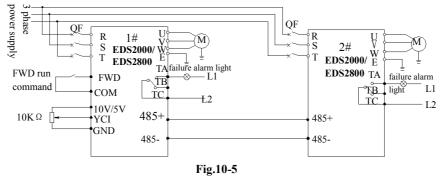
10.4.1 Parameter setting

(1) set parameter F0.05-F0.09 according to rated value of the inverter.

- (2) F3.00=1: Closed loop control selection, here PID closed loop run control is effective.
- (3) F3.01=1: provision channel selection, here choose VCI as provision channel of PID adjustor.
- (4) F3.02=1: feedback channel selection, here choose CCI as feedback channel, 4-20mA/0-10V feedback signal.
- (5) F3.08-F3.10, set according to spot requirement.
- 10.4.2 Basic wiring diagram

10.4.3 Realized function

(1) The inverter can adjust output automatically according to feedback signal to make constant voltage, constant temperature, constant current etc. available.


- (2) can control start/stop of the motor from long distance.
- (3) bear failure alarm and current indicator function.

10.4.4 Application field

Applied in field where need stable system, pressure, flux such as blower pump, constant pressure water supply, air compressor, air conditioner, freezer cooling tower, music fountain, heat supply etc..

10.5 Consecutive action running

10.5.1 Basic wiring diagram

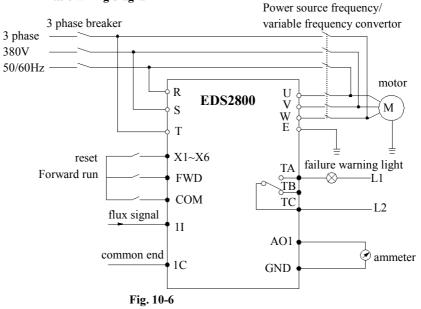
10.5.2 Parameter setting

set 1# inverter as follows:

- (1) F0.00=6: YCI analog setting is frequency provision for 1# inverter.
- (2) F0.02=1: terminal run command control.
- (3) F5.22=0: DO terminal output pulse signal for 1# inverter output frequency.
- (4) F5.10=0: 1# inverter running signal is outputted by digital output terminal Y1.
- set 2# inverter as follows:
- (5) F0.00=7: terminal pulse setting is frequency provision for 2# inverter.
- (6) F0.02=1: terminal run command control.
- (7) F5.07=38: X8 is pulse frequency input.

After above setting, can use digital/pulse output quantum of 1# inverter to realize consecutive action of 2# inverter.

10.5.3 Operation description


After receive forward run command from external switch(closed) and frequency specified value $(0\sim10V)$ from analog input terminal YCI, 1# inverter run at this frequency value. At the same time, already running state of 1# inverter, make 2# inverter get forward run command through open circuit collector output end Y1, here, run frequency value from high-speed pulse output terminal of 1# inverter is passed to 2# inverter through X8 terminal.

10.5.4 Application field

Applied in field such as conveyer belt, coiler, factory production line, food chemistry etc.

10.6 energy save engineering for injection molding machine

10. 6. 1 Basic wiring diagram

10.6.2 parameter setting

(1) Set parameters F0.05-F0.09 according to rated data of the motor.

(2) Special parameters for injection molding machine are effective if special parameters for injection molding machine selection F6.00 is set to 1.

(3) Choose frequency specifying channel according to your needs through F6.01.

10.6.3 Realized function

- (1) Control forward run of the motor by start-up button.
- (2) Control speed of the motor by using current or voltage signal acquired by injection molding machine.
- (3) Bear failure warning output function.

10.7 Constant pressure water supply application

10.7.1 Basic wiring diagram

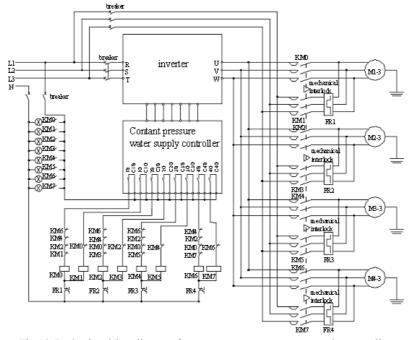
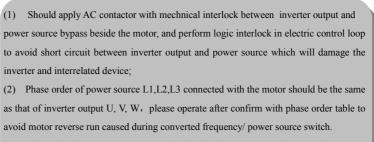



Fig.10-7 basic wiring diagram for constant pressure water supply controller

Description:

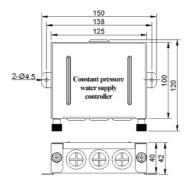
(1B,C1B), (1G,C1G), (2B,C2B), (2G,C2G), (3B,C3B), (3G,C3G), (4B,C4B), (4G,C4G) denote respectively 2 terminals corresponding to control terminal"No.1 variable frequency", "No.1 power source", "No.2 variable frequency", No.2 power source", "No.3 variable frequency", No.3 power source", "No.4 variable


frequency"," No.4 power source" on constant pressure water supply controller.

(3) There should be over current protection device in power source bypass to the motor.

10.7.2 Parameter setting

For constant pressure water supply special parameter please refer to detailed description in F6 group(EDS2000 constant pressure water supply parameter) of Chapter 6.



10.7.3 Applicable to

This constant pressure water supply controller is multi-pump constant pressure water supply controller, need to work with EDS2000 series inverter to realize effective control to multi-pump constant pressure water supply system.

10.7.4 Outer dimension

10.7.5 Connection between constant pressure water supply controller and inverter

(1) put outside

For inverter of 11KW below, put constant pressure water supply controller outside the inverter. Constant pressure water supply controller is collected with the inverter by 8PIN cable and with the contactor by control terminal, as shown in Fig.10-8:

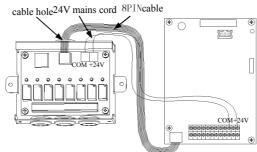
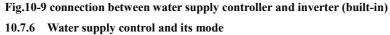



Fig.10-8 connection between water supply controller and inverter

(2) built-in

For inverter of 11KW and above, put constant pressure water supply controller inside the inverter. Take water supply board out from constant pressure water supply controller and fix it onto the inverter (location as shown in Fig.10-8) with accessory parts bolt and screw. Connect water supply board with the inverter directly by 8PIN terminal and with the contactor by control terminal going through cable hole of the inverter.

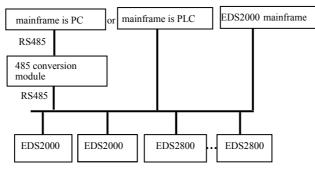
(1) variable frequency/ power source run and switch

Variable frequency run means that the motor is controlled by inverter output frequency. Power source run means that the motor is connected to power source directly. Variable frequency/ power source switch means process from inverter drive to power source drive or from power source drive to inverter drive.

(2) operation mode

Inverter drive frequency conversion pump to run at variable frequency. Inverter can determine running pump quantity (within set range) according to pressure closed loop control requirement and only one pump can be drived by variable frequency at one time.

11 Serial port (RS485/) communication protocol


11.1 Summarization

We provide general RS485/ communication interface in our inverters(such as EDS2000 series, EDS2800 series, EDS1000 series etc.) for the user. Through this communication interface upper device (such as PC, PLC controller etc.) can perform centralized monitor to the inverter (such as to set inverter parameter, control run of inverter, read work state of the inverter) and also long-distance control keypad can be connected to realize various usage requirement of the user.

This communication protocol is interface criterion file designed for realizing above-mentioned function, please read it earnestly and program according to it so that realize long-distance and network control to the inverter.

11.2 Protocol content and description

11.2.1 Communication net buildup mode

A. single mainframe multiple auxiliary B. single mainframe single auxiliary

Fig.11-1 net buildup graph

11.2.2 Communication mode

At present, EDS2000/EDS2800 inverter can be controled by PC mainframe or PLC .and the inverte can be used not only as a auxiliary device but also as a mainframe in RS485 network.but there is only one can be consided as mainframe if in the same network .Specific communication mode is as mentioned below:

- (1) PC or PLC as mainframe, inverter as auxiliary device, point-to-point communication between mainframe and auxiliary device.
- (2) Auxiliary device don't response when mainframe send out command by broadcast address.
- (3) User can set local address, baud rate and data format of the inverter through auxiliary device keypad or serial communication mode.
- (4) Auxiliary device report current failure information to mainframe in the last response frame.
- 11.2.3 Interface mode

RS485 interface can be connected by CN6 terminal on inverter CPU board.

11.2.4 Transport mode

Asynchronous serial, semiduplex transport mode. Default format and transport rate: 8-N-1, 9600bps.For specific parameter setting please see description for F2.17~F2.20 group function code.

11.2.5 Data command frame format

	main device command frame format																	
sending order	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
	frame head	auxiliary device address	auxiliary device address	main device command	main device command	assistant index	assistant index	command index	command index	set data	set data	set data	set data	checkout sum	checkout sum	checkout sum	checkout sum	frame end
Definit- ion	head	add	ress		mand rea		Inde	x are	a	setti	ng da	ata ar	ea	cł	necko	out ar	ea	end
sending byte	1		2		2			4				4			4	4		1

				auxi	liary	devi	ce re	spon	se fra	ame f	form	at					
sending order 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18

1	Λ	Λ
1	-	7

EDS2000/EDS2800/EDS2860 series inverter service manual

	frame head	auxiliary device address	auxiliary device address	auxiliary device reponse	auxiliary device reponse	failure index	failure index	command index	command index	run data	run data	run data	run data	checkout sum	checkout sum	checkout sum	checkout sum	frame end
definit- ion	head	add	ress	repo ar	onse ea		Inde	k area	a	R	un da	ata ar	ea	Cl	necko	out a	rea	end
sending byte	1		2	2	2		4	4			2	4			4	4		1

Fig.11-2 command/response frame format

Remark:

- "Setting data area" and "run data area" may not be existent in some command/data frame format, so in protocol command list it's marked with "nothing".
- (2) In protocol effective character set is: ~, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F and hex data 0DH, ASCII lowercase a, b, c, d, e, f are invalid.
- (3) Effective command frame length is 14 or 18 byte.

11.2.6 Explanation and description for format

(1) frame head

It's character "~" (namely hex 7E) , single byte.

(2) auxiliary device address

Data meanings: local address of auxiliary device, double byte. ASCII format. Inverter factory default is 01.

(3) mainframe command/auxiliary device respond

Data meanings: mainframe send out command and auxiliary device respond to the command. Double byte, ASCII format.

Response code function classification:

Species 1>: command code= "10", mainframe ask auxiliary device to report current preparation state and control situation.

Appendix table 11-1 response code meanings for command code "10"

response	meanings							
code	preparation state of	Control from mainframe is	To set frequency is					
ASCII	auxiliary device	allowed	allowed					

10	Don't get ready no meaning					
11	get ready	allow	allow			
12	get ready	allow	allow			
13	get ready	don't allow	don't allow			
14	get ready	don't allow	don't allow			
20	frame error					

Species 2>: command code= "11" ~ "15" , 5 kinds of function command

which mainframe send to auxiliary device, for detail please see protocol command list.

Appendix table 11-2 response code meanings for command code "11~15"

response code ASCII	Meanings of response code	description
00	Auxiliary device communication and control is normal; function code modification is effective; password is correct.	
20	 (1) frame checkout error; (2) "command area" data overrun; (3) "index area" data overrun; (4) frame length error/non ASCII byte exist in area except frame head, frame end. 	When this response code is reported, data of "command area", "index area" and "running data area" are not reported.
30	 (1) control to auxiliary device is ineffective; (3) ineffective function code parameter modification; (3) "setting/running data" area data overrun. (4) password error. 	Whether report this response code relate to current set state of auxiliary device. When report data of area", "index area" and "run data area" are reported according to protocol requirement.

(4) auxiliary index/command index/failure index

Data meanings: include auxiliary index byte and command index byte. For mainframe, auxiliary index, command index are used for cooperating mainframe command in realizing specific function.

For auxiliary device, auxiliary index, command index are used for reporting 146

failure state code, command index are reported without modification. Data type: hex, 4 byte, ASCII format.

Command index occupy 2 low byte, data range: "00" \sim "FF" .

Auxiliary index occupy 2 high byte, data range: "00" ~ "FF".

Auxiliary device failure state occupy "auxiliary index" byte, see Appendix table 11-3.

failure code description failure code description Accelerating run over 1 13 Converting module protection current decelerating run over 2 14 External device failure current Constant speed run over 3 current detecting circuit failure 15 current accelerating run over 4 16 485 communication failure voltage decelerating run over 5 17 reserved voltage Constant speed run over 6 18 reserved voltage Controller power supply 7 19 Lacking voltage over voltage 8 System disturbance Inverter overload 20 9 Motor overload 21 Reserved 10 Inverter over heat 22 Reserved E²PROM read and write error 11 23 reserved 12 reserved

Appendix table 11-3 failure type description

(5) checkout sum

Data meanings: frame checkout, 4 byte, ASCII.

Calculation method: accumulative sum of ASCII code value of all byte from "auxiliary device address" to "run data" .

(6) frame end

Hex 0D, single byte.

11.2.7 Protocol command list

Frame 7E and frame end 0D, address, checkout sum, ASCII character format are omitted in following description.

Name		Main frame order	liary	order index	run data setting range	Mainframe sending example, such as PC control operation of inverter(C language cluster format, auxiliary device address is set to 01)	run data precision	description
look up auxiliary motor state		10	00	00	no	~010A00000192\r	1	
	current run freq.	11	00	00	no	~010B00000193\r	0.01Hz	
	current set freq.	11	00	01	no	~010B00010194\r	0.01Hz	
	Output voltage	11	00	02	no	~010B00020195\r	1V	
	Output current	11	00	03	no	~010B00030196\r	0.1A	
	Bus-bar voltage	11	00	04	no	~010B00040197\r	1V	
Rea	Load motor speed	11	00	05	no	~010B00050198\r	1rpm	
Read parameter of auxiliary motor	Module temp.	11	00	06	no	~010B00060199\r	1 ⁰ C	
amete	Runtime	11	00	07	no	~010B0007019A\r	1h	
er of a	accumulative time	11	00	08	no	~010B0008019B\r	1h	
uxili	Input terminal	11	00	09	no	~010B0009019C\r	no	
ary m	output terminal	11	00	0A	no	~010B000A01A3\r	no	
otor	analog input VCI	11	00	0B	no	~010B000B01A6\r	0.01V	
	analog input YCI	11	00	0C	no	~010B000C01A7\r	0.01V	
	analog input CCI	11	00	0D	no	~010B000D01A8\r	0.01V	
	exterior pulse input	11	00	0E	no	~010B000E01A9\r	0.01Hz	
	read inverter state	11	00	0F	no	~010B000F01AA\r	no	
adjusti	auxiliary device run command	12	00	00	no	~010C00000194\r	no	

Appendix 11-4 protocol command table

							L .
set current run frequency provision of auxiliary device	12	00	01	0Hz~high limit freq.	~010C00010FA0027C\r	0.01Hz	Set freq. =40.00Hz
auxiliary device run with run freq. provision	12	00	02	0Hz~ high limit freq.	~010C00020FA0027D\r	0.01Hz	auxiliary device run set freq. =40.00Hz
auxiliary device forward run	12	00	03	no	~010C00030197\r	no	
auxiliary device reverse run	12	00	04	no	~010C00040198\r	no	
auxiliary device forward run with run freq. provision	12	00	05	0Hz~ high limit freq.	~010C00050FA00280\r	0.01Hz	forward run boot-strap set freq. =40.00Hz
auxiliary device reverse run with run freq. provision	12	00	06	0Hz~ high limit freq.	~010C00060FA00281\r	0.01Hz	reverse run boot-strap set freq. =40.00Hz
auxiliary device stop	12	00	07	no	~010C0007019B\r	no	
auxiliary device jog run	12	00	08	no	~010C0008019C\r	no	
auxiliary device forward jog run	12	00	09	no	~010C0009019D\r	no	
auxiliary device reverse jog run	12		0A	no	~010C000A01A5\r	no	
auxiliary device stop jog run	12	00	0B	no	~010C000B01A6\r	no	
auxiliary device failure restoration	12	00	0C	no	~010C000C01A7\r	no	
auxiliary device urgent shutdown	12	00	0D	no	~010C000E01A8\r	no	

Read	Run freq. digital setting F0.01	13	00	01	no	~010D00010196\r	0.01Hz	
functio	Run direction setting F0.03	13	00	03	no	~010D00030198\r	1	
ž	accelerating time1 F0.14	13	00	0A	no	~010D000E01AA\r	0.15	
rameter	decelerating time1 F0.15	13	00	0B	no	~010D000F01AB\r	0.1S	
	Run freq. digital setting F0.01	14	00	01	0Hz~ high limit freq.	~010E00011388026B\r		Set function code F0.01=50. 00Hz
de parameter	Run direction setting F0.03	14	00	03	0, 1	~010E00030001025A\r	1	Set function code F0.03 to reverse run
	accelerating time1 F0.14	14	00	09	0~8CA0	~010E000E03E8028B\r	0.15	Set function code F0.14 to 10.0s
	decelerating time1 F0.15	14	00	0A	0~8CA0	~010E000F03E8028C\r	0.15	Set function code F0.15 to 10.0s
<u> </u>	Query auxiliary device software version	15	00	00	no	~010F00000197\r	1	

Appendix table 11-5 response state word meanings of reading inverter state

command

bit	signification								
bit	description	0	1						
Bit0	Stop/run state	stop	run						
Bit1	Logo for lacking voltage	normal	Lacking voltage						
Bit2	FWD/REV run logo	Forward run	Reverse run						

Bit3	Swing freq. run mode logo	ineffective	effective
Bit4	Common run mode logo	ineffective	effective
Bit5	jog run mode logo	no	jog
Bit6	PLC run mode logo	no	yes
Bit7	multi-step freq. run mode logo	no	yes
Bit8	PI closed loop run mode logo	no	yes
Bit9	Set counting value arriving logo	no	yes
Bit10	specified counting value arriving logo	no	yes
Bit11~15	reserved		

Appendix table 11-6 read auxiliary device function code parameter

function	Read auxiliary device function code parameter: all function code parameter except							
definition			user pass	sword and manu	ıfacturer passv	vord		
meanings	fram e	address	order	order index	run data	checkout sum	frame	
mainframe order	7EH	ADDR	13	see remark	none	BCC	0DH	
byte quantity	1	2	2	4	0	4	1	
auxiliary device respond	7EH	ADDR	06	see remark	Function code para.	BCC	0DH	
byte quantity	1	2	2	4	4	4	1	
remark	Command index=combinated by function code group number and hex code of function code number. For instance: If want to read parameter of F0.11 function code, order index=000B; If want to read parameter of F2.11 function code, order index =020B; If want to read parameter of F2.18 function code, order index =0212; If want to read parameter of F2.16 function code, order index =0210; Corresponding relation between decimal and hex value of function code group							

	function	decimal	hex	function	decimal	hex	
	group	ucennui	пел	group	deeminar		
	F0	0	00H	F8	8	08H	
	F1	1	01H	F9	9	09H	
	F2	2	02H	FD	14	0DH	
	F3	3	03H	FF	15	0FH	
	F4	4	04H				
	F5	5	05H				
	F6	6	06H				
	F7	7	07H				
virtual data	0~FFFF (namely 0~65535)						

Must input correct "user password" before you set user function code parameter.

Appendix table 11-7	set auxiliary device fu	inction code parameter

function	Set auxiliary device function code parameter: all function code parameter except						
definition	user password and manufacturer password						
meanings	frame head	address	order	order index	run data	checkout sum	frame end
mainframe order	7EH	ADDR	14	see remark	Functiom code para.	BCC	0DH
byte quantity	1	2	2	4	4	4	1
auxiliary device respond	7EH	ADDR	06	see remark	Function code para.	BCC	0DH
byte quantity	1	2	2	4	4	4	1

remark	Command index=combinated by function code group number and hex code of function						
	code number. For instance:						
	If want to set parameter of F0.11 function code, order index=000B;						
	If want to set parameter of F2.11 function code, order index =020B;						
	If want to set parameter of F2.18 function code, order index =0212;						
	If want to set parameter of F2.16 function code, order index =0210;						
	Corresponding relation between decimal and hex value of function code group No.						
	function group decimal hex function gr			function group	decimal	hex	
	F0	0	00H	F8	8	08H	
	F1	1	01H	F9	9	09H	
	F2	2	02H	FD	14	0DH	
	F3	3	03H	FF	15	0FH	
	F4 4 04H						
	F5	5	05H				
	F6	6	06H				
	F7	7	07H				
Virtual data	Virtual data 0~FFFF (namely 0~65535)						

12 Use explanation for EDS2860 series

12.1 outer dimension and gross weight

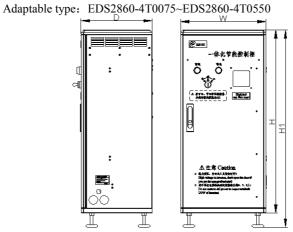


Fig. 12-1 EDS2860-4T0075~EDS2860-4T0550 outline figure

Table 12-1 outline dimension

Inverter type	W (mm)	D (mm)	H (mm)	H1 (mm)	Cross weight(kg)
EDS2860A-4T0075 EDS2860A-4T0110	260	255	570	620	26
EDS2860A-4T0150	280	255	600	660	28
EDS2860A-4T0185 EDS2860A-4T0220	320	300	675	735	36
EDS2860A-4T0300 EDS2860A-4T0370	360	300	770	830	43
EDS2860A-4T0450 EDS2860A-4T0550	435	340	875	935	63

12.2 wiring for main loop terminal

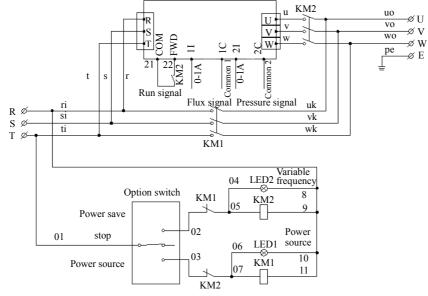

main loop input output terminals are as shown in Table 12-2.

 Table 12-2
 description for main loop input output terminals

Adaptable type	Main loop terminals	Terminals name	Function description
EDS2860-4T0075~ EDS2860-4T0550		R, S, T U, V, W E	3 phase AC 380V input terminal 3 phase AC output terminal shield grounding terminal

12.3 Basic control circuit diagram

Adaptable type: EDS2860-4T0075~EDS2860-4T0550

Description: For control function of EDS2860 series, please refer to that of EDS2800 series.