

DS5L1 series servo driver User manual

WUXI XINJE ELECTRIC CO., LTD.

Data No. SC5 05 20210829 1.0

Basic explanation

- Thank you for purchasing Xinje DS5L1 series servo driver products.
- This manual mainly introduces the product information of DS5L1 series servo driver and MS series servo motor.
- Before using the product, please read this manual carefully and connect the wires on the premise
 of fully understanding the contents of the manual.
- Please deliver this manual to the end user.

This manual is suitable for the following users

- Designer of servo system
- Installation and wiring workers
- Commissioning and servo debugging workers
- Maintenance and inspection workers

Get the manual

• Please consult the supplier, agent and office who purchased the product.

Declaration of liability

- Although the contents of the manual have been carefully checked, errors are inevitable, and we cannot guarantee complete consistency.
- We will often check the contents of the manual and make corrections in the subsequent versions.
 We welcome your valuable comments.
- If there is any change to the contents introduced in the manual, please understand without further notice.

Contact information

Tel: 400-885-0136Fax: 0510-85111290

Address: No.816, Jianzhu West Road, Binhu District, Wuxi City, Jiangsu Province, China

Postcode: 214072

WUXI XINJE ELECTRIC CO., LTD. Copyright

Without explicit written permission, this material and its contents shall not be copied, transmitted or used, and the violator shall be liable for the losses caused. All rights provided in the patent license and registration including utility module or design are reserved.

Jan. 2020

Safety Precautions

Be sure to review this section carefully before use this product. In precondition of security, wire the product correctly.

Before using this product, please read this part carefully and operate after fully understanding the use, safety and precautions of the product. Please connect the product correctly on the premise of paying great attention to safety.

The problems that may arise during the use of the product are basically listed in the safety precautions, and all are indicated by the two levels of attention and danger. For other unmentioned matters, please follow the basic electrical operation rules.

Caution

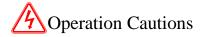
When used incorrectly, there may be danger, moderate injury or minor injury, and property loss.

Danger

When used incorrectly, it may cause danger, personal casualties or serious injuries, as well as serious property losses.

Attention to Product Confirmation

1. Do not install damaged drives, drives that lack spare parts, or drives whose models do not meet the requirements.


Installation Notes

- 1. Before installing wiring, be sure to disconnect the power supply to prevent electric shock.
- 2. It is forbidden to expose the product to water, corrosive gases, flammable gases and other substances, causing electric shock and fire hazards.
- 3. Do not touch the conductive part of the product directly, which may cause misoperation and malfunction.

Cautions for wiring

- 1. Please connect AC power to LN or L1/L2/L3 or R/S/T on the dedicated power terminal of the driver. Do not connect the output terminals U, V, W of the driver to the three-phase power supply.
- 2. Please connect the ground wire correctly. Poor grounding may cause electric shock. Please use 2mm² wire to ground the ground terminal of the driver.
- 3. Please lock the fixed screw of the terminal, otherwise it may cause fire.
- 4. Be sure to disconnect all external power supply before wiring the driver.
- 5. Wiring, please ensure that the encode line, power line is loose, do not tighten, lest cable damage.

- 1. Do not touch the rotating part of the motor after the driver is running. There is a danger of injury.
- 2. Please pay attention to the test run of the motor once, do not connect the motor with the machine, there is the possibility of injury.
- 3. After connecting the machine, please set the appropriate parameters before running, otherwise it may cause the machine out of control or failure.
- 4. In operation, do not touch the radiator, there is a risk of scald.
- 5. Under power-on condition, do not change the wiring, there is a risk of injury.
- 6. Do not switch power frequently. If you need to switch power many times, please control it once in 2 minutes.

Maintenance and inspection

- 1. Do not touch the inside of servo driver and servo motor, otherwise it may cause electric shock.
- 2. When the power is started, it is forbidden to remove the driver panel, otherwise it may cause electric shock.
- 3. Within 10 minutes of power off, the terminal should not be contacted. Otherwise, the residual voltage may cause electric shock.

Wiring attention

- 1. Do not cross the power line and the control signal line from the same pipeline, nor tie them together. The power line and the control signal line are separated by more than 30 centimeters.
- 2. For signal line and encoder (PG) feedback line, please use multi-stranded wire and multi-core stranded integral shielding line. For wiring length, the longest signal input line is 3 meters and the longest PG feedback line is 20 meters.

Catalog

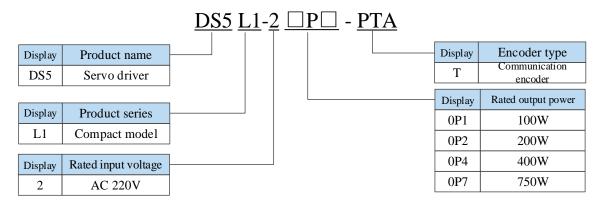
>> CONFIRMATION ON PRODUCT ARRIVAL	5
1 SELECTION OF SERVO SYSTEM	6
1.1 SELECTION OF SERVO DRIVER	6
1.1.1 Model name	6
1.1.2 Description of each part	6
1.1.3 Performance specification	6
1.2 SERVO MOTOR SELECTION	7
1.2.1 Model name	7
1.2.2 Description of each part	8
1.2.3 Axial force and radial force	8
1.3 CABLE SELECTION	9
1.3.1 Model name	
1.3.2 Description of each part	
1.4 SELECTION OF OTHER ACCESSORIES	
1.4.1 Selection of regenerative resistance	
2 INSTALLATION OF SERVO SYSTEM	13
2.1 SERVO DRIVER INSTALLATION	13
2.1.1 Installation site	
2.1.2 Environment condition	
2.1.3 Installation standard	
2.2 SERVO MOTOR INSTALLATION	
2.2.1 Environment condition	
2.2.2 Installation cautions	
2.2.3 Installation environment	
2.3 SERVO CABLE INSTALLATION	
2.3.1 Cable selection	
2.3.2 Xinje cable specification	
2.4 SERVO DRIVER DIMENSION	20
2.5 Servo motor dimension	21
3 SERVO SYSTEM WIRING	24
3.1 Main circuit wiring	25
3.1.1 Servo driver terminal arrangement	
3.1.2 Main circuit terminal	25
3.1.3 CNO, CN2 terminal	26
3.1.4 Communication port	
3.2 CLASSIFICATION AND FUNCTION OF SIGNAL TERMINALS	
3.2.1 DIP switch	
3.2.2 Pulse signal	
3.2.3 SI input signal	
3.2.4 SO output signal	29
4 OPERATE PANEL	30
4.1 BASIC OPERATION	30
4.1.1 Operating panel description	30
4.1.2 Button operation	30
4.2 OPERATION DISPLAY	31
4.3 GROUP U MONITOR PARAMETER	
4.4 GROUP F AUXILIARY FUNCTION PARAMETERS	
4.4.1 Group F0	
4.4.2 Group F1	
4.5 FAULT ALARM HANDLING	
4.6 Parameter setting example	
4.7 CHANCE MOTOR CODE	20

5 OPERATION OF SERVO SYSTEM	39
5.1 CONTROL MODE SELECTION AND SWITCHING	
5.1.1 Control mode selection	
5.1.2 Control mode switching	
5.2 Basic function setting	
5.2.1 Jog operation	
5.2.2 Servo enable setting	
5.2.3 Rotation direction switching	
5.2.4 Stop mode	
5.2.5 Power-off brake	
5.2.6 Braking setting	
5.3 Position control	
5.3.1 General position control	
5.3.2 Position control (external pulse command)	
5.3.3 Position control (Internal command)	
5.4 Speed control	
5.4.1 Speed mode general control	
5.4.2 Speed control (internal speed)	
5.4.3 Speed control (pulse frequency command)	
5.5 TORQUE CONTROL	
5.5.1 Torque control (internal setting)	
5.6 ABSOLUTE VALUE SYSTEM	
5.6.1 Absolute system setting	
5.6.2 Replace the battery	
5.6.3 The upper limit of turns	
5.6.4 Read absolute position by communication	
5.6.5 Clear multi-turn	
5.6.6 Zero calibration of absolute encoder	
5.6.7 Homing application	
5.7 AUXILIARY FUNCTIONS	
5.7.1 Anti-blocking protection	
5.7.2 Torque limit	
5.7.3 Speed limit 5.7.4 I/O signal distribution	
5.7.5 Output terminal function	
5.7.6 Input terminal function	
5.7.7 Time limit curve of overload protection	
6 Servo gain adjustment	
6.1 Overview of Servo gain adjustment	
6.1.1 Overview and process	
6.1.2 The difference of these adjustment modes	
6.2 ROTARY INERTIA PRESUMPTION	
6.2.1 Overview	
6.2.2 Notes	
6.2.3 Operation tool	
6.2.4 Operation steps	
6.3 FAST ADJUSTMENT	
6.3.1 Overview	
6.3.2 Fast adjustment steps	
6.3.3 Rigidity level corresponding gain parameters	
6.3.4 Notes	
6.4 Auto-tuning	
6.4.1 Overview	
6.4.2 Notes	
6.4.3 Operation tools	
6.4.4 Internal instruction auto-tuning steps	
6.4.5 External instruction auto-tuning steps	
6.4.6 Related parameters	
6.5 Manual adjustment	

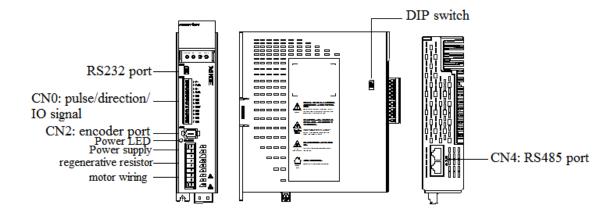
6.5.1 Overview	
6.5.2 Adjustment steps	130
6.5.3 Gain parameters for adjustment	131
6.6 Adaptive	
6.6.1 Overview	132
6.6.2 Notes	
6.6.3 Operation steps	132
6.6.4 Inertia mode and related parameters	133
6.6.5 Recommended inertia ratio parameters	133
6.6.6 Adaptive parameters effect	134
6.6.7 Invalid parameters when adaptive effective	134
6.7 VIBRATION SUPPRESSION	135
6.7.1 Overview	135
6.7.2 Operation tools	135
6.7.3 Vibration Suppression (Panel)	135
6.7.3 Vibration suppression (panel)	135
6.7.4 Vibration suppression (PC software)	136
6.7.5 Vibration suppression (manual setting)	137
6.7.6 Vibration suppression (quick FFT)	137
6.7.7 Notch filter	139
6.8 GAIN ADJUSTMENT	140
6.8.1 Model loop control	140
6.8.2 Torque disturbance observation	142
6.8.3 Gain adjustment parameters	143
6.8.4 Gain switch	143
6.9 GAIN ADJUSTMENT	147
6.9.1 Load shaking	147
6.9.2 Vibration	147
6.9.3 Noise	147
7 ALARM	140
7.1 ALARM CODE LIST	148
7.2 ANALYSIS OF ALARM TYPES	150
8 MODBUS-RTU COMMUNICATION	161
8.1 COMMUNICATION WIRING	161
8.2 COMMUNICATION PARAMETERS	163
8.3 COMMUNICATION PROTOCOL	166
8.3.1 Character structure	166
8.3.2 Communication data structure	166
8.4 COMMUNICATION EXAMPLE	
8.4.1 Communication with Xinje PLC	168
APPENDIX	169
APPENDIX 1. GROUP P PARAMETERS	
Appendix 2. UX-XX monitoring parameters	
APPENDIX 3. FX-XX AUXILIARY FUNCTION PARAMETERS	186
Appendix 4. Modbus address list	
Appendix 5. Q&A	
Appendix 6. General debugging steps	193
APPENDIX 7. APPLICATION EXAMPLE	
APPENDIX 8. SERVO GENERAL MODE PARAMETERS	196
Appendix 8.1 Basic parameters	
Appendix 8.2 External pulse position mode general parameters	
Appendix 8.3 Internal position mode general parameters	
Appendix 8.4 Internal torque control general parameters	
Appendix 8.5 Internal speed control general parameters	
Appendix 8.6 External pulse speed control general parameters	198
Appendix 9. Torque-speed characteristic curve	

▶▶ Confirmation on product arrival

After the product arrives, please confirm the integrity of the product in the following aspects.


Items	Notes
Does the product on arrival match the specified model?	Please confirm according to the nameplate of servo motor and servo unit.
Does the servomotor shaft rotate smoothly?	The servo motor shaft is normal if it can be turned smoothly by hand. Servo motors with brakes, however, cannot be turned manually.
Is there any damage?	Check the overall appearance, and check for damage or scratches that may have occurred during shipping.
Are there any loose screws?	Check screws for looseness using a screwdrive.
Is the motor code the same with the code in drive?	Check the motor code marked on the nameplates of the servomotor and the parameter U3-00 on the servo drive.

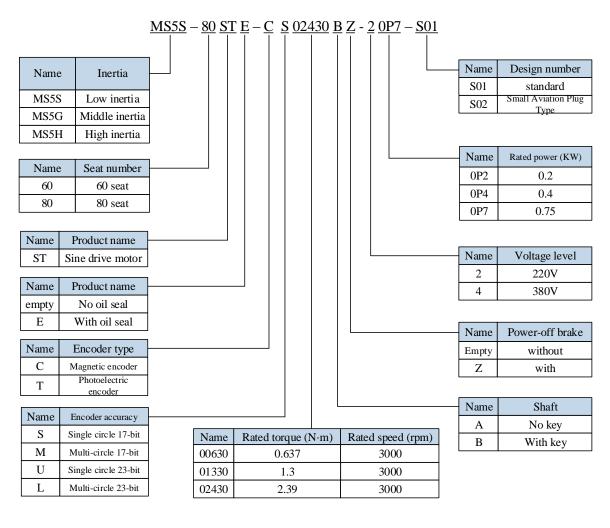
If any of the above is faulty or incorrect, contact Xinje or an authorized distributor.


$1 \ \ \text{Selection of servo system}$

1.1 Selection of servo driver

1.1.1 Model name

1.1.2 Description of each part



1.1.3 Performance specification

Servo unit		DS5L1 series servo driver	
Applicable encoder		Standard: 17-bit/23-bit communication encoder	
Input power supply		DS5L1-2□P□-PTA: single phase AC200-240V, 50/60Hz	
Control mode		Three-phase full-wave rectifier IPM PWM control sinusoidal current drive mode	
	Using temperature	-10∼+40 °C	
Using	Storage temperature	-20∼+60 °C	
condition Environment Environm	Environment humidity	Below 90% RH (no condensation)	
	Vibration resistance	4.9m/s ²	
Structure		Pedestal installation	

1.2 Servo motor selection

1.2.1 Model name

MS6S-60 C S 30 B Z 1 - 2 0P4

Display	Inertia
MS6S	Low inertia
MS6G	Medium inertia
MS6H	High inertia

Display	Base no.
40	40 flange
60	60 flange
80	80 flange

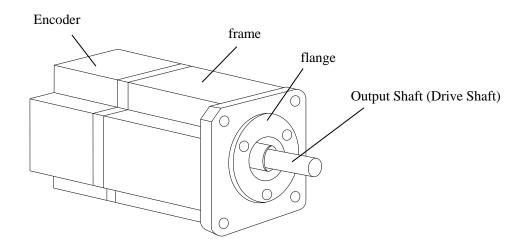
Symbol	Product name
C	Magnetic Encoder
T	Photoelectric encoder

Symbol	Encoder
S	Single turn 17-bit
M	Multi-turn 17-bit
U	Single turn 23-bit
L	Multi-turn 23-bit

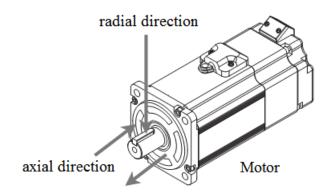
Display	Rated speed (rpm)
15	1500
20	2000
25	2500
30	3000

Symbol	Shaft
A	Key, no oil seal, with threaded hole
В	With key, oil seal and threaded hole
С	No key, no oil seal, with threaded hole
D	No key, with oil seal and threaded hole

Display	Power-loss brake
Z	With brake
Empty	No brake


Display	Connector
1	Standard 1
2	Standard 2
D	Customized machine

Display	Power supply
2	220V
4	380V


Display	Rated output
0P1	100W
0P2	200W
0P4	400W
0P7	750W

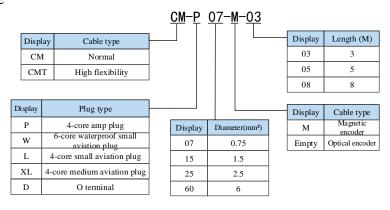
Note: At present, only the combination of CS, CM, TL and T is selected for the type of encoder. Standard type 1: 80 flange and below amp plug.

1.2.2 Description of each part

1.2.3 Axial force and radial force



Base no.	40ST	60ST	80ST	100ST	110ST	130ST	180ST	220ST/265ST
Axial force	54N	74N	147N	≤200N	250N	300N	400N	≤500N
Radial force	78N	245N	392N	500N	500N	600N	800N	1000N


1.3 Cable selection

1.3.1 Model name

■ Encoder cable

■ Power cable

■ Brake cable explanation

- For 80 and below flange motors with suffix S01, the brake cable model shall be selected: CB-P03-length.
- The standard wiring length of Xinje is 3m, 5m, 8m, 12m, 16m and 20m.

1.3.2 Description of each part

■ Encoder cable

(1) Pin definition of encoder on servo driver side

Commonton annoquence	Pin definition		
Connector appearance	No.	Definition	
	1	5V	
	2	GND	
	3	/	
	4	/	
	5	485-A	
	6	485-B	

(2) Cable connection of encoder on motor side

Connector nine	Pin d	efinition	Cuitable madel
Connector pins	No.	Definition	Suitable model
	1	Battery +	
	2	Battery -	
	3	Shielded cable	MC5 40 60 00 C
9 6 3	4	485-A	MS5-40, 60, 80 flange
8 5 2]	5	485-B	-S01 motor
7 4 1	6	/	MS6-40, 60, 80 flange motor
	7	5V	motor
	8	GND	
	9	/	
	No.	Definition	
	1	Shielded cable	
	2	Battery +	
$\begin{pmatrix} 6 & 0 \\ 6 & 0 \end{pmatrix}$	3	Battery -	MS5-40, 60, 80 flange
	4	485-A	-S02 motor
(4) (3)	5	485-B	
	7	5V	
	8	GND	

Battery box description:

- 1) The encoder including the cable definition of battery +, battery- is for the absolute motor, and the non-absolute motor cable has no such pin.
- 2) Only the cable of absolute value motor has external battery box, which contains a 3.6V/2.7Ah large capacity battery, and has the function of replacing batteries when power cut. The using life is more than two years. Please refer to chapter 5.6.2 change battery.

■ Power cable

(1) Pin definition of power cable on servo driver side

Connector	Pin definition		
appearance	Color	Definition	
	Brown	U	
	Black	V	
	Blue	W	
	Yellow-green	PE	

(2) Power cable connection on motor side

	Pin definition		0 2 11 11	
Connector pins	No.	Definition	Suitable model	
	1	U		
	2	W	Applicable to 40, 60, 80 flange S01 / B1	
$\begin{bmatrix} 3 \end{bmatrix} 1 \begin{bmatrix} 5 \end{bmatrix}$	3	V	motors	
	4	PE		
	No.	Definition	Applicable to 40, 60 and 90 flance 501 /	
1 2	1	BK+	Applicable to 40, 60 and 80 flange S01 / B1 brake motors	
	2	BK-	B1 brake motors	
	No.	Definition		
	1	PE		
$\left(\begin{array}{ccc} 1 & 2 \end{array}\right)$	2	U	Applicable to 40, 60 and 80 flance 502	
	3	V	Applicable to 40, 60 and 80 flange S02 motors	
$\left(\begin{array}{c} 4 \\ 3 \end{array} \right)$	4	W	motors	
	5	BK+		
	6	BK-		
	No.	Definition		
0	1	PE	A 1' 11 / 120 G	
(4) (2)	2	U	Applicable to 130 flange non middle	
	3	V	inertia motor	
	4	W		

	No.	Definition	
(1) (4)	1	U	
	2	W	Suitable for 40, 60, 80 flange B2 motors
(2) (3)	3	V	-
	4	PE	
	No.	Definition	
	1	U	
	2	W	S:4-1.1- f 40
2 5	3	V	Suitable for 40, 60 and 80 flange B2 brake
(3) (4)	4	PE	motors
	5	BK+	
	6	BK-	

Brake pins:

The cable including pin BK+, BK- is used for the brake motor. The cable of the non-brake motor has no BK pins.

1.4 Selection of other accessories

1.4.1 Selection of regenerative resistance

When the servo motor is driven by the generator mode, the power returns to the servo amplifier side, which is called regenerative power. The regenerated power is absorbed by charging the smooth capacitor of the servo amplifier. After exceeding the rechargeable energy, the regenerative resistance is used to consume the regenerative power.

The servo motor driven by regenerative (generator) mode is as follows:

- The deceleration stop period during acceleration and deceleration operation;
- Running vertically and axially;
- When the external load drives the motor to rotate.

Servo driver model	Regenerative resistance connection terminals
	(1) Using built-in regenerative resistance, short P + and D terminals, P + and C are disconnected.
DS5L1-2□P□-PTA	(2) Use external regenerative resistance, connect regenerative resistance to P + and C terminals, remove P + and D short wiring, P0-25 = power value,
	P0-26 = resistance value.

The following table is the recommended specifications of external regenerative resistance for each type of motor.

		External regenerative	External regenerative
Servo driver model	Rmin	resistance	resistance
Servo driver moder	(Not less than this value)	(Recommended	(Recommended power
		resistance value)	values)
DS5L1-20P1-PTA	50Ω	50Ω-100Ω	Above 200W
DS5L1-20P2-PTA	3022	3022-10022	Above 200 w
DS5L1-20P4-PTA	40Ω	40Ω - 100Ω	Above 500W
DS5L1-20P7-PTA	4022	4022-10022	Above 500 W

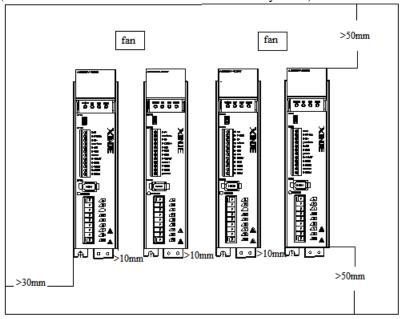
Note:

- (1) The smaller the resistance is, the faster the discharge will be, but the smaller the resistance is, the easier the breakdown resistance will be. Therefore, please close to the lower limit but not be less than the lower limit when choosing the type.
- (2) When wiring, please use high-temperature flame-retardant wire, and the regenerative resistance surface can not contact with the wire.

2 Installation of servo system

2.1 Servo driver installation

2.1.1 Installation site


- Please install it in the installation cabinet without sunshine or rain.
- > Do not use this product near corrosive and flammable gas environments such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.
- > Do not install in high temperature, humidity, dust, metal dust environment;
- ➤ No vibration place.

2.1.2 Environment condition

Item	Description
Use ambient temperature	-10~40°C
Use ambient humidity	20~90%RH (no condensation)
Storage temperature	-20~60°C
Storage humidity	20~90%RH (no condensation)

2.1.3 Installation standard

Be sure to comply with the installation standard in the control cabinet shown in the figure below. This standard is applicable to the situation where multiple servo drivers are installed side by side in the control cabinet (hereinafter referred to as "when installed side by side").

■ Servo Drive Orientation

Install the servo drive perpendicular to the wall so the front panel containing connectors faces outward.

■ Cooling

As shown in the figure above, allow sufficient space around each servo drive for cooling by cooling fans or natural convection.

■ Side-by-side Installation

When install servo drives side by side as shown in the figure above, make at least 10mm between and

at least 50mm above and below each servo drive. Install cooling fans above the servo drives to avoid excessive temperature rise and to maintain even temperature inside the control panel.

■ Environmental Conditions in the Control Panel

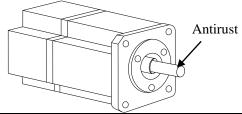
• Servo driver working ambient Temperature: -10~40 °C

• Humidity: 90%RH or less

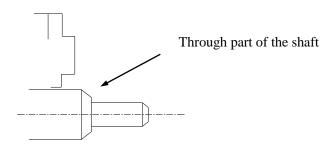
• Vibration: 4.9m/s²

Condensation and Freezing: None

• Ambient Temperature for Long-term Reliability: 50°C maximum


2.2 Servo motor installation

MS series servomotors can be installed either horizontally or vertically. The service life of the servomotor can be shortened or unexpected problems might occur if it is installed incorrectly or in an inappropriate location. Follow these installation instructions carefully.


CAUTION

- . The end of the motor shaft is coated with antirust. Before installing, carefully remove all of the paint using a cloth moistened with paint thinner.
- 2. Avoid getting thinner on other parts of the servo motor.

2.2.1 Environment condition

When used in places with water droplets or oil droplets, the protection effect can be achieved through the treatment of motors. However, in order to seal the through part of the shaft, please specify the motor with oil seal. Connectors should be installed downward.

MS series servo motors are for indoor use. Please use them under the following installation conditions:

Item	Description		
Use ambient temperature	-10°C~40°C (no freeze)		
Use ambient humidity	20%~90%RH (no condensation)		
Storage temperature	-20°C~60°C		
Storage humidity	-20%~90%RH (no condensation)		
Protection level	IP65(MS5)/IP66(MS6)		

2.2.2 Installation cautions

Item	Description
	◆ Before installation, please wipe the "rust-proof agent" of the extension end
Antirust treatment	of the servo motor shaft, and then do the relevant rust-proof treatment.
	◆ It is forbidden to impact the extension end of the shaft during installation, otherwise the internal encoder will be broken.
	◆ When the pulley is installed on the servo motor shaft with keyway, the
Encoder cautions	screw hole is used at the end of the shaft. In order to install the pulley, the double-headed nails are inserted into the screw holes of the shaft, the washer is used on the surface of the coupling end, and the pulley is gradually locked with the nut.
	 ◆ For the servo motor shaft with keyway, use the screw hole at the end of the shaft to install. For shaft without keyway, friction coupling or similar methods are used. ◆ When the pulley is dismantled, the pulley mover is used to prevent the bearing from being strongly impacted by the load.
	◆ To ensure safety, protective covers or similar devices, such as pulleys installed on shaft, are installed in the rotating area.
	♦ When installing the servo motor, make it conform to the centering accuracy requirement shown in the picture below. If the centering is inadequate, vibration will occur, and sometimes the bearing and encoder may be damaged. When installing the coupling, please do not directly impact the motor shaft, otherwise the encoder installed on the opposite side of the load shaft will be damaged.
Centering	The maximum and minimum deviations are less than 0.03mm (rotated with the coupling) measured at four locations in a circle. The maximum and minimum deviations are less than 0.03mm (rotated with the coupling) measured at four locations in a circle.
Installation direction	◆ Servo motor can be installed in horizontal or vertical direction.

	When using in places where water droplets are dropping, please use it on the
	basis of confirming the protection level of servo motor. (except for the
	shaft-through part) When oil droplets will drip into the shaft-through part,
	please specify the servo motor with oil seal.
Oil and water	Conditions for use of servo motors with oil seals:
solutions	◆Make sure the oil level is below the lip of the oil seal when using.
	◆Please use the oil seal to keep the splash of oil droplets in good condition.
	◆When the servo motor is installed vertically upward, please pay attention not
	to oil accumulation on the lip of the oil seal.
	◆ Do not "bend" or apply "tension" to the wire, especially the core of the
Stress state of cable	signal line is 0.2mm or 0.3mm, very thin, so when wiring (using), do not make
	it too tight.

Item		Description
Processing	of	For the connector part, please pay attention to the following items:
Connector Part		◆When connecting the connector, please make sure that there is no foreign
		matter such as garbage or metal sheets in the connector.
		◆When connecting the connector to the servo motor, it is necessary to connect
		the connector from the side of the main circuit cable of the servo motor first, and
		the grounding wire of the main cable must be connected reliably. If one side of
		the encoder cable is connected first, the encoder may fail due to the potential
		difference between PE.
		◆When wiring, please make sure that the pins are arranged correctly.
		◆Connectors are made of resin. Do not apply shock to avoid damaging the
		connector.
		◆When carrying out the operation under the condition that the cable remains
		connected, it is necessary to grasp the main body of the servo motor. If only the
		cable is seized for handling, it may damage the connector or pull the cable off.
		◆If bending cable is used, full attention should be paid to the wiring operation
		and stress should not be applied to the connector part. If the stress is applied to
		the connector part, the connector may be damaged.

2.2.3 Installation environment

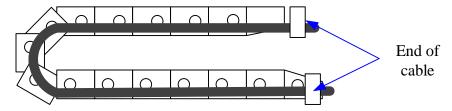
- Do not use this product near corrosive and flammable gas environments such as hydrogen sulfide, chlorine, ammonia, sulfur, chlorinated gas, acid, alkali, salt, etc.
- In places with grinding fluid, oil mist, iron powder, cutting, etc., please choose motor with oil seal.
- ➤ A place away from heat sources such as stoves;
- ➤ Do not use motor in enclosed environment. Closed environment will lead to high temperature and shorten service life of motor.

2.3 Servo cable installation

DS5 series servo motor adopts communication encoder, which may cause uncertain influence due to improper use and environmental factors. When installing power cable and encoder cable, please pay attention to the following instructions.

2.3.1 Cable selection

Our regular cable materials include ordinary cable and high flexible cable. The adapter cable connector for motors with 80 flange or less is divided into aviation plug and amp plug; the adapter cable connector for motors with 80 flange or more is aviation plug.

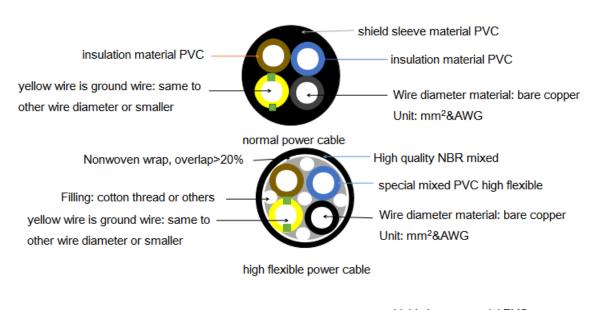

The cable selected by the customer needs to define the operating conditions on site.

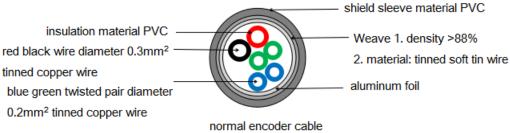
If the cable is used in general occasions, please select the cable from other manufacturers (2.3.2 specifications of Xinje cable) in strict accordance with the specifications given by Xinje. If the cable is used in unconventional occasions, please select the cable according to the actual working conditions to be superior to the existing specifications of Xinje.

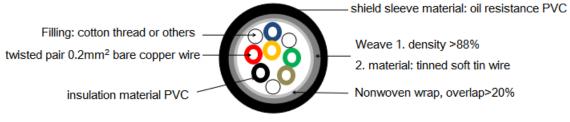
- 1. In normal situations, the following points should be noted:
 - For pulse command signal cable, please ensure wiring less than 3m.
 - The encoder cable shall be within 20 meters. It is recommended to select special cable if it is more than 20 meters. The wire diameter of encoder cable depends on the length of encoder cable used on site. The longer the cable is, the greater the wire resistance is, and the more severe the voltage attenuation or signal distortion is, which is likely to cause pulse loss or no signal can be detected. Therefore, in general, the customized special cable should be selected if it is more than 20 meters.
 - The power cable diameter depends on the current condition of the motor. Generally, the wire diameter is 1/10 of the maximum current of the motor. For example, the maximum current of the motor is 60A, and the wire diameter of 6mm² is selected.
 - In case of interference, it is necessary to separate strong and weak current. It is recommended to separate power cable from encoder cable and signal cable.
 - Ensure the correct grounding of servo driver and servo motor. The grounding resistance is not more than 4Ω , and the grounding depth is more than 2m. It is recommended to use 4*40 angle galvanized steel or 40mm diameter galvanized steel pipe;
 - If the customer makes the wire by himself, the cable specification please refer to chapter 2.3.2 Xinje cable specification, the welding reliability shall be ensured when making the wire to avoid false welding, bridge connection, wrong welding, missing welding, etc., and the continuity of both ends of the cable can be tested after the welding is completed.
 - 2. In unconventional occasions, the following items shall be noted:

(1) Occasions of dragging and bending cables

- Do not bend the cable or bear the tension. As the core diameter of signal cable is only 0.2mm or 0.3mm, it is easy to break, please pay attention to it when using.
- When the cable needs to be moved, please use flexible cable. Ordinary cable is easy to be damaged after long-term bending. Small power motor (motor below 80 flange) with its own cable can not be used for cable movement.
- When using cable protection chain, please ensure that:
 - ① The bending radius of the cable is more than 10 times of the outer diameter of the cable;
 - ② The wiring in the cable protection chain shall not be fixed or bundled, only the two immovable wires end in the cable protection chain shall be bound and fixed;
 - 3 Do not twist the cable;
 - ① The duty cycle in the cable protection chain shall be less than 60%;
 - ⑤ Do not mix the cables with too big difference in appearance. The thin wire will be broken by the thick wire. If it is necessary to mix the wiring, partition device is arranged in the middle of the cable.




- (2) Greasy and humid occasions
- It is recommended to select cable with aviation plug as connector instead of AMP interface cable.
- It is necessary to make corresponding protection (glass glue/insulating cloth binding, etc.) for the used AMP interface cable on site.
- Use special cable.
- (3) Interference, high current / high power occasions (such as welding equipment)
- The motor is properly grounded.
- High current equipment shall be grounded separately.
- Reasonable wiring. Such as separation of strong and weak current cables.
- Use metal shielding layer to shield, add magnetic ring to the encoder cable to resist interference.
- (4) Low / high temperature
- Select cables (special cables) that meet the use conditions.


2.3.2 Xinje cable specification

1. Material composition of Xinje cable

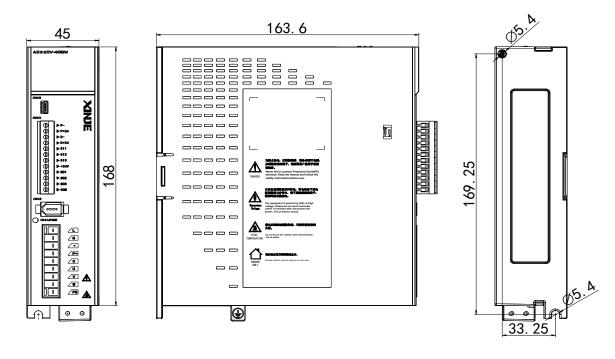
Cross section of cable (encoder, power cable), corresponding introduction of wire skin material, wire diameter, wire core material shielding material, etc.

high flexible encoder cable

2. Cable diameter specification

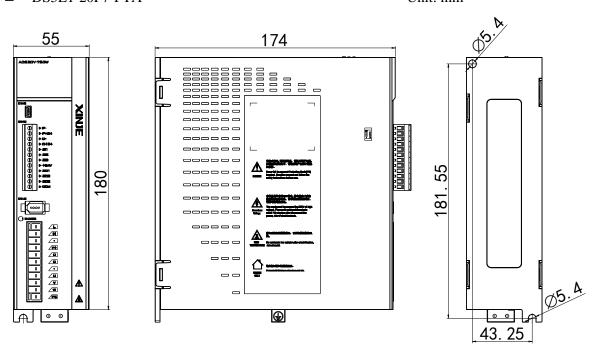
type	Encoder cable	Power cable
100W	6*0.2mm²	4*0.75mm²
200W	6*0.2mm²	4*0.75mm²
400W	6*0.2mm²	4*0.75mm²
750W	6*0.2mm²	4*0.75mm²

3. Cable performance specification

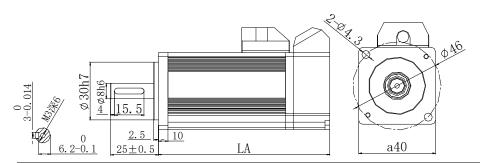

Performance		Normal cable	High flexible cable	
Ordinary	temperature	-20°C~80°C	-20°C~80°C	
resi	stance			
Encoder cable withstand		1000V/min	1000V/min	
VO	ltage			
Power cable withstand		3000V/min	3000V/min	
VO	ltage			
	Bending	Travel ≤ 10 m, 7.5*D;	Travel ≤ 10 m, 7.5*D;	
	radius	Travel ≥ 10 m, $10*D$;	Travel ≥10m, 10*D;	
Mobile	D 1	Travel $<10m, \ge 1$ million times;	Travel <10m, ≥3 million	
installation	Bending	Travel ≥ 10 m, ≥ 2 million times;	times;	
	resistance times		Travel ≥10m, ≥5 million	
	times		times;	
Fixed	Bending	5*D	5*D	
installation	radius			

Note: D represents the finished product cable diameter.

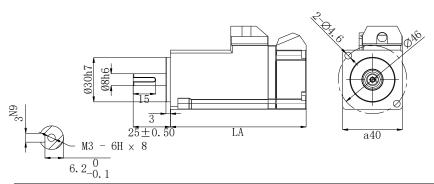
2.4 Servo driver dimension


■ DS5L1-20P1-PTA, DS5L1-20P2-PTA, DS5L1-20P4-PTA

Unit: mm

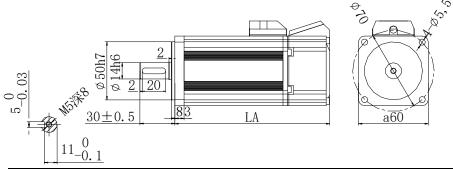

■ DS5L1-20P7-PTA

Unit: mm

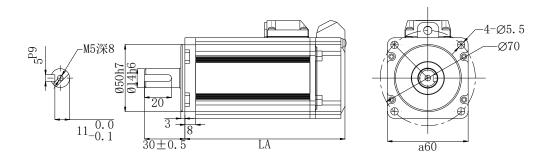


2.5 Servo motor dimension

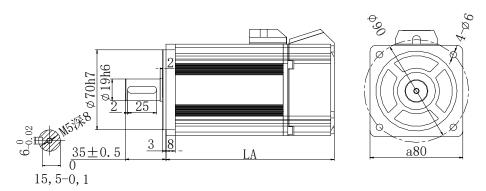
■ 40 series motor installation dimensions Unit: mm



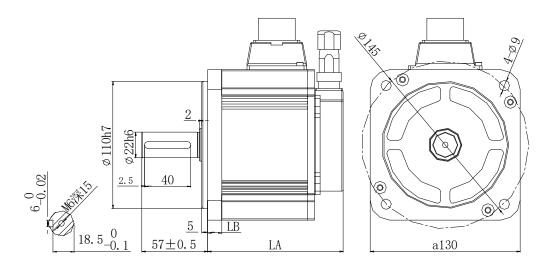
	LA	.±1	Inertia
Motor model	Normal	With brake	level
MS5S-40ST-C00033000-20P1-S01/S02	89.5	119	Low inertia


	LA	.±1	Inertia
Motor model	Normal	With brake	level
MS6H-40C□30B□1-20P1	91	122.9	High inertia

■ 60 series motor installation dimensions Unit: mm


	LA±1		Inertia	
Motor model	Normal	With brake	level	Series
MS5S-60ST-C\(\pi\)00630\(\pi\)-20P2-S01/S02	79	114	Low	MS5
MS5S-60ST-C ₀ 01330 ₀ -20P4-S01/S02	99	134	inertia	series

MS5H-60ST-C = 00630 = -20P2-S01/S02	91	126	High	
MS5H-60ST-C = 01330 = = -20P4-S01/S02	111	146	inertia	
MS-60ST-T01330-20P4-D01	145	189	-	


	LA±1		Inantia
Motor model	Normal	With brake	Inertia level
MS6H-60C□301B□□-20P4	119	151	High inertia
MS6S-60C□301B□□-20P4	107	139	Low inertia
MS6H-60C□301B□□-20P2	90	121	High inertia

■ 80 series motor installation dimensions Unit: mm

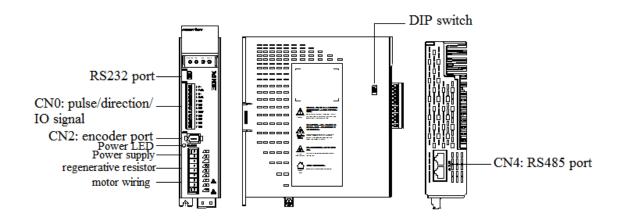
	LA±1		Inertia
Motor model	Normal	With brake	level
MS5S-80ST-C\(\pi\)02430\(\pi\)-20P7-S01/S02	107	144	Low
MS5S-80ST-C\(\pi\)03230\(\pi\)-21P0-S01/S02	128	165	inertia
MS5H-80ST-C = 02430 = = -20P7-S01/S02	119	156	High
MS5H-80ST-C = 03230 = = -21P0-S01/S02	140	177	inertia
MS-80ST-T02430□□-20P7	150	199	
MS-80ST-T03520□□-20P7	179	219	-

■ 130 series motor installation dimensions Unit: mm

	LA±1			
Motor model	Normal	With brake	LB	Inertia level
MS5G-130STE-C = 05415 = = -20P8-S01	117.5	147.0	12.5	Middle inertia
MS5G-130STE-TL05415 == -20P8-S01	134.5	164.5	12.5	Middle mertia

3 Servo system wiring

Servo driver interface wiring recommended wire, as shown in the following table:


Cable	Encoder cable	Power cable	Power supply wiring
100W	6*0.2mm²	4*0.75mm²	2*0.75mm²
200W	6*0.2mm²	4*0.75mm ²	2*0.75mm²
400W	6*0.2mm²	4*0.75mm²	2*0.75mm²
750W	6*0.2mm²	4*0.75mm²	2*0.75mm²

Note:

- (1) Please do not cross power wires and signal wires from the same pipeline, nor tie them together. When wiring, please keep the power wire and signal wire more than 30 cm apart.
- (2) For the signal wire and the feedback wire of the encoder (PG), please use the multi-stranded wire and the multi-core stranded integral shielding wire.
- (3) For wiring length, the longest instruction input wire is 3m and the longest PG feedback wire is 20m.
- (4) Even if the power supply is off, there may still be a high voltage in the servo unit. Please do not touch the power terminal temporarily (10 minutes).
- (5) Do not turn ON/OFF power frequently. When the ON or OFF power supply needs to be repeatedly connected, please control it less than once in 2 minutes. Because of the capacitance in the power supply of the servo driver, a large charging current (charging time of 0.2 seconds) will flow through when the power supply is ON. Therefore, if the ON/OFF power supply is frequently used, the performance of the main circuit components in the servo driver will be degraded.

3.1 Main circuit wiring

3.1.1 Servo driver terminal arrangement

3.1.2 Main circuit terminal

■ DS5L1-20P1-PTA, DS5L1-20P2-PTA, DS5L1-20P4-PTA

_	1 -
∏ B	L
B	N
B	•
B	P+
B	С
B	U
8	V
В	W
[6	PE
	ı

Terminal	Function	Explanation
L/N	Power supply input of main circuit	Single phase AC 200~240V, 50/60Hz
•	Vacant terminal	-
U, V, W, PE	Motor terminals	Connect the motor Note: the ground wire is on the terminal, please check it before power on!
P+, C	External regenerative resistor	Connect regenerative resistor between P+ and C, P0-25= power value, P0-26= resistor value

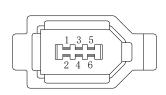
0 L 0 N 0 P+ 0 C 0 U 0 V 0 W

PE

■ DS5L1-20P7-PTA

Terminal	Function	Explanation
L/N	Power supply input of main circuit	Single phase AC 200~240V, 50/60Hz
•	Vacant terminal	-
U, V, W, PE	Motor terminals	Connect the motor Note: the ground wire is on the terminal, please check it before power on!
	Internal regenerative resistor	Short P+ and D, disconnect P+ and C
P+, D, C	External regenerative resistor	Connect regenerative resistor between P+ and C, disconnect P+ and D, P0-25= power value, P0-26= resistor value

3.1.3 CN0, CN2 terminal


3.1.3.1 CN0 terminal

CN0 terminal explanation

Name	Explanation	Name	Explanation
P-	Pulse input PUL-	SI3	Input terminal 3
P+24	Open collector connection	+24V	Input +24V
D-	Direction input DIR-	SO1	Output terminal 1
D+24	Open collector connection	SO2	Output terminal 2
SI1	Input terminal 1	SO3	Output terminal 3
SI2	Input terminal 2	COM	Output terminal ground

3.1.3.2 CN2 terminal

The terminals of the CN2 connector are arranged as follows (faced solder plates):

No.	Definition
1	5V
2	GND
3	/
4	/
5	485-A
6	485-B

3.1.4 Communication port

■ CN3 (RS-232 communication)

Driver side-5-pin trapezoidal interface

Pin	Name	Description
1	TXD	RS232 send
2	RXD	RS232 receive
3	GND	RS232 signal ground

Note: Please use the dedicated cable provided by XINJE company.

RS232 port default communication parameters: baud rate 19200bps, data bit is 8-bit, stop bit is 1-bit, even parity.

Modbus station no.

Parameter	Function	Default setting	Range	Modification	Effective
P7-10	Modbus station no.	1	1~255	Servo OFF	Immediately

■ CN4 (RS-485 communication)

T	A NT	
	AIN.	port

Pin	Name
4	485A
5	485B
6	485GND

RS485 port default communication parameters: baud rate 19200bps, data bit is 8-bit, stop bit is 1-bit, even parity.

Modbus station no.

Parameter	Function	Default setting	Range	Modification	Effective
P7-00	Modbus station no.	1	0~100	Servo OFF	Immediately

Note:

- (1) It supports standard Modbus RTU protocol and is used as a Modbus RTU slave station.
- (2) RS232 and RS485 communication ports can be used at the same time.

3.2 Classification and function of signal terminals

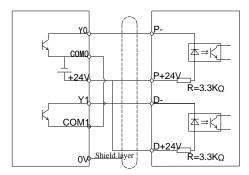
3.2.1 DIP switch

By default, both switch 1 and 2 are set to off, and the corresponding input pulse is collector 24V. Both switch 1 and 2 are set to on, and the corresponding input pulse is differential 5V.

Note:

- (1) The two switches directions must be consistent. If they are inconsistent, once the driver pulse terminal is powered, the pulse terminal will be burned.
- (2) Please ensure that the pulse wiring is consistent with that selected by the switch, otherwise the pulse terminal of the driver will be burned out once the pulse terminal is powered on.

3.2.2 Pulse signal


Instruction form	Option	Meaning	P-input signal	D-input signal	Chapter
	0	CW/CCW dual-pulse mode	CW	CCW	
P0-10 xxx□	1	AB phase mode	A phase	B phase	<u>5.3.2.2</u>
AAA		Pulse+direction mode	pulse	direction	

Collector open circuit type (24V voltage) input signal is P+ 24V/D+ 24V Differential mode (5V voltage) input signal is P+5V/D+5V

Open collector (24V voltage)

PLC, CNC and SCM


servo driver

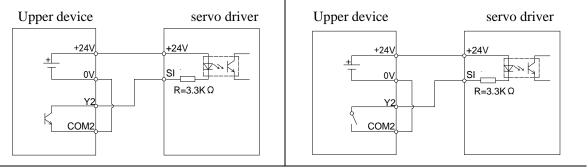
Differential mode (5V voltage)

servo driver

Note:

- (1) The power supply voltage range of P-/P+ 24V and D-/D+ 24V is $18V\sim25V$. The power supply voltage range of P-/P+5V, D-/D+5V is $3.3V\sim5V$. There may be abnormal pulse and direction if the voltage is lower than 18V/3.3V.
- (2) Servo pulse input port is ON at 10mA.
- (3) In order to resist interference, twisted-pair shielding wire must be used.
- (4) If the controller is Xinje PLC, the rated current of the pulse output port is 50mA. According to this data, it can be judged that one pulse theoretically can drive at most five servos. It is recommended not to exceed 3.

3.2.3 SI input signal


Please use a relay or an open collector transistor circuit to connect. When using relay connection, please select the relay for small current. If the relay is not small current, it will cause bad contact.

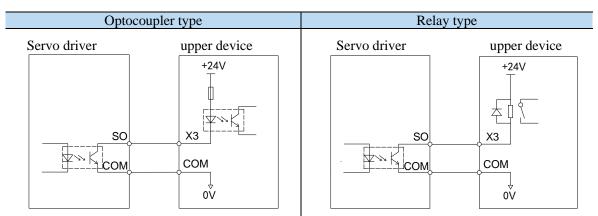
Type	Input terminal	Function
Digital input	SI1~SI3	Multifunctional input signal terminal

Defaulted assignment of input terminals

Terminal	SI1	SI2	SI3
Function	S-ON/enable	ALM-RST/alarm reset	P-OT/forward run prohibition

Open collector (power supply is 24V)	Relay type (power supply is 24V)

Note: The maximum allowable voltage and current capacity of collector open circuit output circuit are


Voltage: DC 30V (maximum) Current: DC 50mA (maximum)

3.2.4 SO output signal

Type	Output terminal	Function
Optocoupler output	SO1~SO3	Multifunctional output terminal

Defaulted assignment of output terminals

 =				
Terminal	SO1	SO2	SO3	
Function	COIN/positioning completion	ALM/alarm	Not distribute	

Note: the maximum allowable voltage and current capacity of collector open output circuit are as follows:

Voltage: DC 30V (maximum)

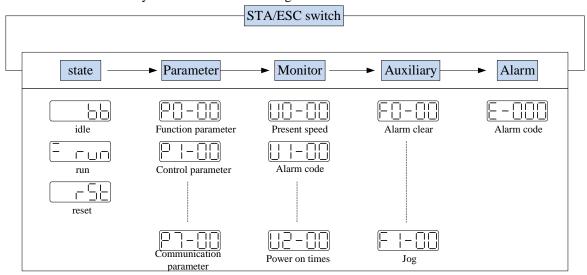
Current: SO1 DC 500mA (maximum) (400W and below servo can support)

SO (others) DC 50mA (maximum)

4 Operate panel

4.1 Basic operation

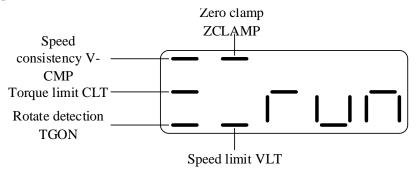
4.1.1 Operating panel description


Button	Operation	
STA/ESC	Short press: state switch, state return	
	Short Press: The display data increases	
INC	Long press: The display data increases	
	continuously	
	Short Press: The display data decreases	
DEC	Long press: The display data decreases	
	continuously	
ENTED	Short press: shift;	
ENTER	Long press: Set and view parameters.	

The panel will be self-checked, and all the display digital tubes and five decimal points will be lit for one second at the same time.

4.1.2 Button operation

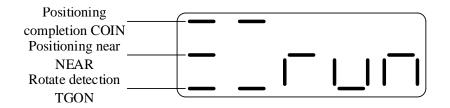
By switching the basic state of the panel operator, it can display the running state, set parameters, run auxiliary functions and alarm state. After pressing the STA/ESC key, the states are switched in the order shown in the following figure.


State: BB indicates that the servo system is idle; run indicates that the servo system is running; RST indicates that the servo system needs to be re-energized.

- Parametric setting Px-xx: The first X represents the group number, and the last two X represents the parameter serial number under the group.
- Monitor status Ux-xx: The first X represents the group number, and the last two X represents the parameter number under the group.
- Auxiliary function Fx-xx: The first X denotes the group number, and the last two X denotes the parameter number under the group.
- Alarm state E-xxx: The first two X denote the alarm category, and the last x denotes the small category under the category.

4.2 Operation display

■ Speed torque control mode


1. Digit display contents

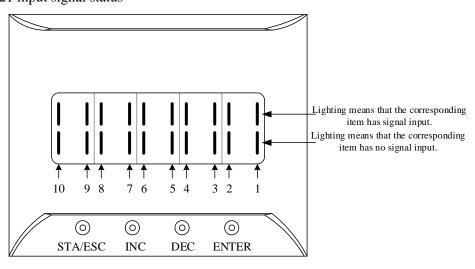
Digit data	Display contents		
P5-39	When the actual speed of the motor is the same as the command speed,		
Same speed detection	turn on the light.		
(/V-CMP)	Detection Width of Same Speed Signal: P5-04 (Unit: rpm)		
	When the speed is controlled, when the torque exceeds the set value,		
P5-42	turn on the light.		
Torque limit (/CLT)	Internal Forward Torque Limitation: P3-28		
	Internal Reverse Torque Limitation of: P3-29		
P5-40	P5-03 (Unit: rpm) When the motor speed is higher than the rotating		
Rotate detection (/TGON)	speed, turn on the lamp.		
Rotate detection (710011)	Rotation detection speed: P5-03 (unit: rpm)		
P5-31	When the range clamp gional starts to amounts turn on the light		
Zero clamp (/ZCLAMP)	When the zero clamp signal starts to operate, turn on the light.		
P5-43	When the speed exceeds the set value in torque control mode, turn on		
Speed limit (/VLT)	the light.		
Speed mint (/VL1)	Forward speed limit in torque control: P3-16; reverse speed limit: P3-17.		

2. Short code display content

Short code	Display contents	
	Standby status	
	Servo OFF status. (The motor is in a non-electrified state)	
	In operation	
	Servo enabling state. (The motor is on-line)	
	Need reset status	
	Servo needs to be re-energized	
	Forbidden forward drive state	
	P-OT ON status. Refer to Section 5.2.4.	
	Forbidden reversal drive state	
	N-OT ON status. Refer to Section 5.2.4.	
	Control mode 2 is vacant.	

■ Position control mode

1. Digit display contects

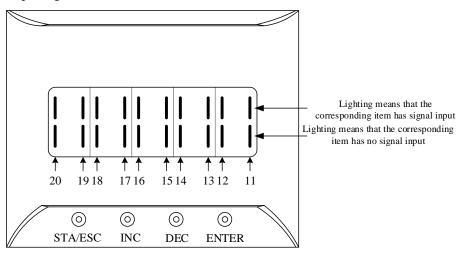

Digit data	Display contents			
P5-38	In position control, when the given position is the same as the actual			
Positioning completion	position, turn on the light.			
(/COIN)	Location Completion Width: P5-00 (Unit: Instruction Pulse)			
P5-36	In position control, when the given position is the same as the actual			
Near (/NEAR)	position, turn on the light.			
Near (/NEAR)	Near signal width: P5-06			
P5-40	When the motor speed is higher than the rotating speed, turn on the			
Rotate detection (/TGON)	lamp.			
Rotate detection (/100N)	Rotation detection speed: P5-03 (unit: rpm)			

2. Short code display contents

Short code	Display contents		
	Standby status		
	Servo OFF status. (The motor is in a non-electrified state)		
	In operation		
	Servo enabling state. (The motor is on-line)		
	Need reset status		
	Servo needs to be re-energized		
	Forbidden forward drive state		
	P-OT ON status. Refer to Section 5.2.4.		
	Forbidden reversal drive state		
	N-OT ON status. Refer to Section 5.2.4.		
	Control mode 2 is vacant.		

4.3 Group U monitor parameter

■ U0-21 input signal status

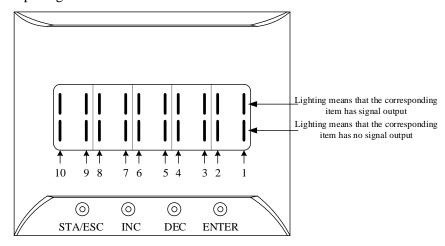


■ U0-21 input signal 1 distribution

Segment code	Description	Segment code	Description
1	/S-ON servo enable	2	/P-CON proportion action instruction
3	/P-OT prohibition of forward drive	4	/N-OT prohibition of reverse drive
5	/ALM-RST alarm reset	6	/P-CL forward side external torque limit
7	/N-CL reverse side external torque limit	8	/SPD-D internal speed selection
9	/SPD-A internal speed selection	10	/SPD-B internal speed selection

Note: When reading through communication, the binary numbers read from right to left correspond to the position of / S-ON, / P-CON, 0 means that the position signal is not input, 1 means that the position signal has input. Example: 0x0001 means / S-ON has input, 0x0201 means / S-ON and / SPD-B has input.

■ U0-22 input signal status

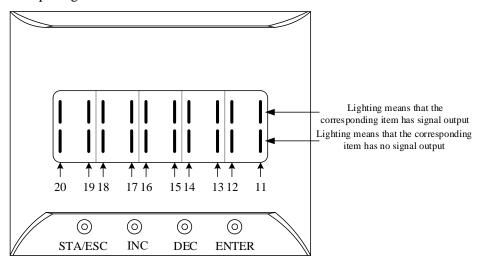


■ U0-22 input signal 2 distribution

Segment code	Description	Segment code	Description
11	/C-SEL control mode selection	12	/ZCLAMP zero clamp
13	/INHIBIT instruction pulse prohibition	14	/G-SEL gain switch
15	/CLR pulse clear	16	/CHGSTP change step
17	Reserved	18	Reserved
19	Reserved	20	Reserved

Note: When reading through communication, the binary numbers read from right to left correspond to the position of / C-SEL, / ZCLAMP, 0 means that the position signal is not input, 1 means that the position signal has input. Example: 0x0001 means / C-SEL has input, 0x0041 means / C-SEL and / G-SEL have input.

■ U0-23 output signal status



■ U0-23 output signal 1 distribution

Segment code	Description	Segment code	Description
1	Positioning completion hold (/COIN_HD)	2	Positioning completion (/COIN)
3	Same speed detection (/V-CMP)	4	Rotate detection (/TGON)
5	Ready (/S-RDY)	6	Torque limit (/CLT)
7	Speed limit detection (/VLT)	8	Break lock (/BK)
9	Warn (/WARN)	10	Output near (/NEAR)

Note: When reading through communication, the binary numbers read from right to left correspond to the position of / COIN_HD, / COIN, 0 means that the position signal is not output, 1 means that the position signal has output. Example: 0x0001 means / COIN_HD has output, 0x0201 means / COIN_HD and / NEAR has output.

■ U0-24 output signal status

■ U0-24 output signal 2 distribution

Segment code	Description	Segment code	Description	
11	Alarm (/ALM)	12	Speed arrived (/V-RDY)	
13	Customized output 1	14	Customized output 2	
15	/Z phase	16	/MRUN	
17	Xnet bus error	18	Reserved	
19	Reserved	20	Reserved	

Note: When reading the state through communication, the binary numbers correspond to /ALM position in turn from right to left. 0 means that the position signal has no input, and 1 means that the position signal has input.

■ U0-88 motor code read status

U0-88 display status	Meaning
	0001—Read encoder motor parameters successfully, but P0-33=0, use the motor parameters in the read encoder.
	0011—Read the encoder motor parameters successfully, P0-33 \neq 0, use the motor parameters in the driver.
	0021—Read the encoder motor parameters successfully, but the parameter value is 0, please set P0-53.
	0031—Read encoder motor parameters successfully, but damaged (CRC check error), please set P0-53.
	0042——Failed to read encoder motor parameters, please set P0-53.

4.4 Group F auxiliary function parameters

4.4.1 Group F0

Function		Function	
code	Description	code	Description
			Panel external instruction
F0-00	Alarm clear	F0-08	auto-tuning
			Panel internal instruction
F0-01	Resume to default settings	F0-09	auto-tuning
F0-02	Clear the position offset	F0-10	Panel vibration suppression 1
F0-04	Clear up historical alarm records	F0-11	Panel vibration suppression 2
			Panel vibration suppression (fast
F0-07	Panel inertia identification	F0-12	FFT)

1. Alarm clear (F0-00)

Setting F0-00=1 can reset the alarm status. When an alarm occurs, please first eliminate the cause of the alarm, and then clear up the alarm.

2. Resume to default setting (F0-01)

Set F0-01=1 when enabler is shut down, press ENTER to resume to default settings, no need to cut power.

3. Clear the position offset (F0-02)

Set F0-02=1 to clear the offset.

4. Clear up historical alarm records (F0-04)

Set F0-04=1 can clear up historical alarm records from U1-14 to U1-53.

5. Panel inertia identification (F0-07)

Refer to panel inertia identification operation steps chapter 6.2.4.

6. Panel external instruction auto-tuning (F0-08)

Refer to external instruction auto-tuning chapter 6.4.5.

7. Panel internal instruction auto-tuning (F0-09)

Refer to internal instruction auto-tuning chapter 6.4.4.

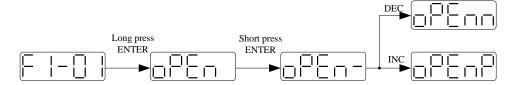
8. Panel vibration suppression (F0-10, F0-11)

Refer to vibration suppression chapter 6.7.3.

9. Panel vibration suppression (F0-12)

Refer to vibration suppression chapter 6.7.6.

4.4.2 Group F1

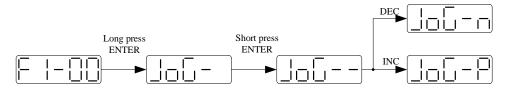

Function		Function	
code	code Description		Description
F1-00	Jog run	F1-05	Software enable
F1-01	Test run	F1-06	Reset turns of absolute encoder
F1-02	Current Sampling Zero-correction		

1. Test run (F1-01)

Before entering the test run mode, please confirm that the motor shaft is not connected to the machine!

When the servo driver is connected to the non-original encoder or power cable, it should first enter the test run mode to verify that the encoder terminal or power terminal is connected correctly.

Test run mainly checks the power cable and the encoder feedback cable to determine whether the connection is normal. According to the following operation, the motor can normally achieve forward and reverse rotation. If the motor shaft shakes or driver alarms, please immediately disconnect the power supply, and re-check the wiring situation.



2. Jog run (F1-00)

Before entering the jog run mode, please confirm that the test run is normal when the motor is empty, so as to confirm that the servo connection is correct.

Jog run mode requires the driver to be idle in bb status!


Starting with the 3700 firmware version, the jog run function changes from position mode to speed mode. The acceleration and deceleration time is controlled by P3-09 and P3-10.

Parameter	Meaning	Default setting	Unit	Setting range	Change	Effective
P3-18	JOG speed	100	1rpm	0~1000	Servo OFF	At once

3. Current sampling zero-correction (F1-02)

When the servo driver is self-renewed or the motor runs unsteadily after a long time, the user is advised to use the current sampling zero-correction function.

Press STATUS/ESC to exit.

4. Forced enable (F1-05)

Parameter	Signal name	Setting	Meaning	Change	Effective
		0	Not enable		
		1 (default)	I/O enable /S-ON		At once
P0-03	Enable	2	Software enable	Servo	
10 03	mode		(F1-05 or communication)	OFF	
		3	Fieldbus enable (the model which		
		3	supports motion bus)		

Set P0-03=2

F1-05 = 0: cancel enable, enter bb status.

F1-05 = 1: forced enable, servo is in RUN status.

Note

- (1) After power on again, the forced enable set by F1-05 will fail.
- (2) If it needs to enable when power on and still enable after re-power on, P0-03 should be set to 1 and P5-20 to n.0010.

5. Reset turns of absolute encoder (F1-06)

Refer to chapter 5.7.5.

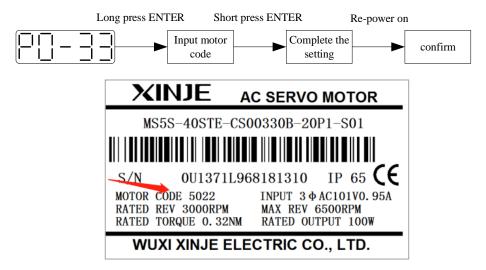
4.5 Fault alarm handling

When a fault occurs, the alarm status is automatically jumped out, and the alarm number is displayed. When there is no fault, the alarm status is invisible. In the alarm state, the fault can be reset by writing 1 to F0-00 through panel operation.

If the servo power supply OFF makes the servo alarm, it is not necessary to clear the alarm.

Note: When an alarm occurs, the cause of the alarm should be eliminated first, and then the alarm should be removed.

4.6 Parameter setting example


An example is given to illustrate the operation steps when the content of parameter P3-09 is changed from 2000 to 3000.

Step	Panel display	Used buttons	Operations
1		STA/ESC INC DEC ENTER	No operation
2		STA/ESC INC DEC ENTER O O O O	Press STA/ESC
3		STA/ESC INC DEC ENTER	Press INC for three times to show P3-00
4		STA/ESC INC DEC ENTER	Press ENTER, the last 0 will flash
5	P3-09	STA/ESC INC DEC ENTER	Press INC for 9 times
6	P3-09	STA/ESC INC DEC ENTER	Long press ENTER to show the value of P3-09
7		STA/ESC INC DEC ENTER	Press INC, DEC, ENTER to increase decrease or shift, after changing, long press ENTER to confirm
8		END	

Note: When the setting parameter exceeds the range that can be set, the driver will not accept the setting value, and the driver will report E-021 (parameter setting exceeds the limit). The parameter setting overrange usually occurs when the upper computer writes parameters to the driver through communication.

4.7 Change motor code

A servo driver can be equipped with a variety of motors with similar power levels. Different types of motors are distinguished by the motor code on the motor nameplate. Before debugging the servo system, make sure that the motor code U3-00 matches the motor nameplate label.

5 Operation of servo system

5.1 Control mode selection and switching

5.1.1 Control mode selection

Servo can combine two control modes and switch between them. By switching freely between mode 1 and mode 2 through the / C-SEL signal, more complex control requirements can be satisfied.

User parameter		Control mode	Reference
	1	Torque control (internal setting)	<u>5.5.1</u>
P0-01	3	Speed control (internal setting)	<u>5.4.2</u>
Submode	5	Position control (internal position instruction)	<u>5.3.3</u>
1	6 (default)	Position control (external pulse instruction)	<u>5.3.2</u>
	7	Speed control (pulse frequency instruction)	<u>5.4.3</u>
	1	Torque control (internal setting)	<u>5.5.1</u>
P0-02	3	Speed control (internal setting)	<u>5.4.2</u>
Submode	5	Position control (internal position instruction)	<u>5.3.3</u>
2	6 (default)	Position control (external pulse instruction)	<u>5.3.2</u>
	7	Speed control (pulse frequency instruction)	<u>5.4.3</u>

Position control is to input the pulse train command into the servo unit and move it to the target position. The position instruction can be given by the combination of external pulse input, the total number of internal position instructions and speed limit. The position is controlled by the number of input pulses, and the speed is controlled by the frequency of input pulses. It is mainly used in the occasions requiring positioning control, such as manipulator, grinder, engraving machine, CNC machine, etc.

Speed control is to control the speed of machinery by speed command. The servo driver can control the mechanical speed quickly and accurately by the speed command given by digital, analog voltage or communication.

Torque control is to control the output torque of motor by torque command. Torque command can be given by digital, analog voltage or communication. The current of servo motor is linear with torque, so the control of current can realize the control of torque. The torque control mode is mainly used in the devices with strict requirements on the stress of materials, such as some tension control occasions such as winding and unwinding devices. The torque setting value should ensure that the stress of materials is not affected by the change of winding radius.

5.1.2 Control mode switching

Control mode switching means that when the servo is enabled, that is, when the servo panel displays run, the working mode of the servo driver can be switched between mode 1 and mode 2 through the external input signal /C-CEL.

Related parameter

Parameter	Name	Default setting	Suitable mode	Meaning	Change	Effective
P5-30	/C-SEL	n.0000	All	To switch the control mode	Anytime	At once

Parameter range n.0000-001A, can be distributed to other input terminal through P5-30. If the control mode needs to be switched through SI2 input signal, P5-30 can be set to n.0002/0012. Refer to section 3.2.2 for hardware wiring details.

Parameter setting	Signal/C-SEL terminal input status	Signal /C-SEL terminal logic	Control mode
P5-30=n.0000	No need external terminal input	Invalid	The control mode set by P0-01
P5-30=n.000□	SI□ terminal no signal input	Ilivalid	Refer to chapter 5.1.1
P5-30=n.001□	SI□ terminal has signal input		Refer to enapter 3.1.1
P5-30=n.0010	No need external terminal input	Valid	The control mode set by P0-02
P5-30=n.000□	SI□ terminal has signal input	v and	Refer to chapter 5.1.1
P5-30=n.001□	SI □ terminal no signal input		Refer to enapter 3.1.1

5.2 Basic function setting

5.2.1 Jog operation

Inching operation needs to be completed after the power supply is connected and before the online commissioning operation. Its purpose is to ensure that the servo system can operate normally without abnormal vibration, abnormal sound and other problems. Inching operation can be carried out by panel group F parameters or our upper computer debugging software xinje servo tuner.

Inching operation can be divided into two modes: inching operation and trial operation. Inching operation is closed-loop control, trial operation is open-loop control, and general steps are trial operation first, and then inching operation. Both operations can take effect only when the servo is not enabled (i.e. the panel is BB).

Related parameter

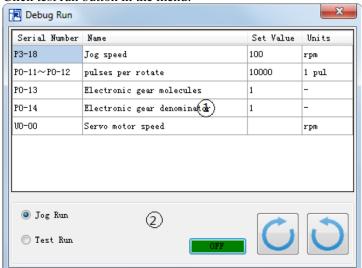
parameter	Meaning	Default setting	Unit	Range	Modify	Take effect
P3-18	JOG speed	100	1rpm	0~1000	Servo bb	At once

P3-18 is the speed for closed-loop inching operation, which only takes effect in two inching modes, and the rest normal control modes are invalid.

(1) jog by panel


Related parameter

Function code	Meaning	Explanation
F1-00	Jog operation	closed loop jog operation
F1-01	Trial operation	Open loop trial operation


The steps of jog operation through panel

Make sure the F1-01 open loop operation has no problem, then do F1-00 closed loop operation. See section 4.4.2 for the specific operation of the panel.

(2) Jog operation through XinjeServo Tuner software

Click test run button in the menu:

Jog speed P3-18: the motor speed in jog mode.

Jog run: closed loop inching operation. Test run: open loop inching operation. ON/OFF: enable the jog mode.

: forward run and reverse run.

The steps of inching through Xinje servo tuner

Open the software XinjeServo Tuner, set the jog speed P3-18, select test run/jog run button, click ON. Then click forward or reverse button to run.

5.2.2 Servo enable setting

The servo enable signal effectively represents that the servo motor is powered on. When the servo enable signal is invalid, the motor cannot operate without power. The enabling mode can be controlled by external terminal signal or upper computer communication.

■ Related parameter

parameter	Name	Setting	Meaning	Change	Effective
		0	Not enable		
	Enoble	1(default)	I/O enable /S-ON		
P0-03		Enable mode 2	Software enable (F1-05 or enabled by	Servo bb	At once
mode	mode		software)		
		3	Fieldbus enable		

parameter	Name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-20	/S-ON	n.0001	All	servo enable signal	Anytime	At once

(1) Forced enabling

When P0-03=2, the forced enabling of F1-05 can take effect, and the forced enabling fails after power on again.

F1-05 can write 1 to hex address 0x2105 through ModbusRTU protocol communication or set to 1 through the panel.

(2) Power on enable

Parameter setting P0-03 = 1 (default), P5-20 = n.0010

This setting mode can make the servo system in the enabling state as soon as it is powered on, without external terminal control, and the servo enabling state will remain when it is powered on again.

(3) External SI terminal control enable

When P0-03 is set to 1, the external terminal enable control is effective.

Parameter setting P0-03 = 1 (default), P5-20 = $n.000 \square / n.001 \square$.

 $\ \square$ is the SI terminal number, for example, P5-20 is n.0001 (default), that is, SI1 terminal control enable.

Prerequisite	Parameter setting status	signal/S-ON terminal input status	signal/S-ON terminal logic	Servo status	
P0-03=1	P5-20=n.000□	SI□ terminal has no sigal input	involi d	The panel displays BB, and the servo is not enabled	
	P5-20=n.001	SI□ terminal has sigal input	invalid		
	P5-20=n.000□	SI□ terminal has sigal input	1: d	The panel shows run, servo enabled	
	P5-20=n.001	SI□ terminal has no sigal input	valid		

5.2.3 Rotation direction switching

Related parameter

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-05	Definition of rotation direction 0- positive mode 1- negative mode	0	-	0~1	Servo bb	Power on again

The user can change the rotation direction of servo motor through parameter P0-05. It is specified that the "forward rotation" of the motor is "counter clockwise rotation" and "reverse rotation" is "clockwise rotation". (all view from the motor axis)

Mode	Forward running	Reverse running	P0-05 setting
Standard setting CCW is forward run	CCW	CW	P0-05=0
Reverse mode CW is forward run	CW	ccw	P0-05=1

5.2.4 Stop mode

Servo shutdown can be divided into inertia shutdown and deceleration shutdown according to the

shutdown mode. The following explains the servo shutdown mode.

Shutdown mode	Inertia stop	Deceleration stop
Stopping principle	The servo driver is not enabled, the servo motor is not powered, and free deceleration to 0. The deceleration time is affected by mechanical inertia, equipment friction, etc.	The servo driver outputs the reverse braking torque, and the motor decelerates rapidly to 0.
Stopping features	Advantages: smooth deceleration, small mechanical impact, small mechanical impact Disadvantage: slow deceleration process	Advantages: short deceleration time Disadvantages: mechanical impact

According to different scenarios of servo shutdown, it can be divided into servo off shutdown, alarm shutdown and over travel shutdown.

(1) Servo OFF and alarm shutdown

■ Related parameter

N	- Related parameter					
Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-30	Stop timeout	20000	1ms	0~65535	Servo bb	At once
P3-32	braking torque	300	1%	0~1000	Anytime	At once
P5-03	Rotation detection speed	50	rpm	0~10000	Anytime	At once
P0-27	Servo OFF stop mode	0	-	0/2	Servo bb	At once
P0-29	Alarm stop mode	2	-	0/2	Servo bb	At once

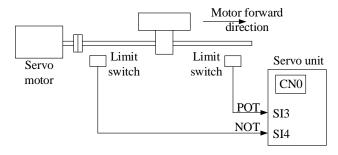
Parameter	Value	Meaning			
P0-27/	0	inertia stop and maintain the inertia operation state after stopping.			
P0-27/ P0-29	2	deceleration brake stop and maintain the inertia operation state after stopping.			

Note:

(1) P0-27 / P0-29 = 0, inertia stops, and maintains inertia operation state after stopping.

When the servo is off and the alarm occurs, the motor starts to stop by inertia until the speed is less than P5-03, and then it turns to free stop. The servo will time the inertia stop process. In the process of inertia stop, if the timing time has been greater than P0-30, and the motor speed has not dropped below P5-03, the servo will directly free stop, and give the stop timeout alarm E-262.

- (2) P0-27 / P0-29 = 2, deceleration braking stops, and maintains inertia operation state after stopping. When servo off and alarm occur, the motor will generate a braking torque of P3-32. The motor will start braking and stop until the speed is less than P5-03 (rotation detection speed), and then it will turn to free stop. At the same time, the servo will timing the braking stop process. In the process of inertia stop, if the timing time has been greater than P0-30, and the motor speed has not dropped below P5-03, the servo will directly free stop, and give the stop timeout alarm E-262.
- (3) The so terminal of servo driver is equipped with holding brake function. No matter P0-27 / P0-29 = 0 or 2, it stops in deceleration mode.


(2) Stop mode in case of over travel

The overtravel prevention function of servo unit refers to the safety function that the servo motor is forced to stop by inputting the signal of limit switch when the movable part of the machine exceeds the designed safe moving range.

Related parameter

parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P0-28	Servo override stop mode	2	1	0~3	Servo bb	At once
P0-30	Stop timeout	20000	1ms	0~65535	Servo bb	At once
P3-32	Braking torque	300	1%	0~1000	Anytime	At once
P5-22	Forward run prohibition /P-OT	n.0003	-		Anytime	At once
P5-23	Reverse run prohibition /N-OT	n.0000	-		Anytime	At once

Be sure to connect the limit switch as shown in the figure below.

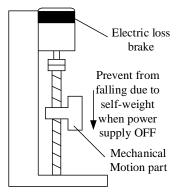
Rotary applications such as round tables and conveyors do not need the function of overrun prevention. At this time, there is no need to connect the overrun prevention with input signals.

Parameter setting	Signal /POT, terminal input status	Overtravel signal (/POT, /NOT) terminal logic
P5-22/P5-23=n.0000	No need to connect external input	
P5-22/P5-23=n.000□	SI□ terminal has no signal input	invalid
P5-22/P5-23=n.001□	SI□ terminal has signal input	

P5-22/P5-23=n.0010	No need to connect external input	
P5-22/P5-23=n.000□	SI□ terminal has signal input	valid
P5-22/P5-23=n.001□	SI□ terminal has no signal input	

Parameter settings in forward limit signal /POT and reverse limit signal /NOT can not be set to the same terminal input at the same time.

Direction	Meet the limit	Operation status
Forward	positive limit is valid	POT, set the servo overrun stop mode as P0-28
run	negative limit is valid	Alarm E-261
Reverse	positive limit is valid	Alarm E-261
run	negative limit is valid	NOT, set the servo overrun stop mode as P0-28

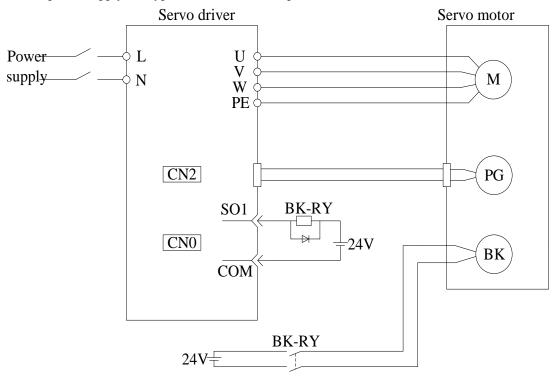

Parameter	Value	Meaning
	0	The deceleration stops 1, the overrun direction moment is 0 after
	U	stopping, and receiving instructions.
	1	Inertia stops, after stopping, overrun direction moment is 0,
P0-28	1	receiving instructions.
	2	The deceleration stops 2, after stopping, the overrun direction does
	2	not receive instructions.
	3	Alarm (E-260)

Note:

- (1) When P0-28 = 0/2, the motor starts to decelerate and stop after receiving the overtravel stop signal, and the braking torque is P3-32 when decelerating stop, and the stop timeout also plays a role in the overtravel process.
- (2) During position control, when the motor is stopped by over travel signal, there may be position deviation pulse. To clear the position deviation pulse, the clear signal /CLR must be input. If the servo unit still receives pulses, they will accumulate until the servo unit gives an alarm.
- (3) During torque control, the SO terminal of servo drive has the function of holding brake, which can't be distributed through the overtravel signal terminals P5-22 and P5-23.
- (4) Servo driver SO terminal is assigned with holding brake function, P0-28 is automatically set to 2.

5.2.5 Power-off brake

When the servo motor controls the vertical load, the purpose of using the "brake servo motor" is: when the power supply of the system is placed in the "OFF", the movable part will not move under the action of gravity.


Note: The brake built in the servo motor is a fixed special brake without excitation. It can not be used for dynamic braking. Please use it only when the servo motor is in a stop state.

Related parameter

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P5-44	Brake interlock/BK	n.0000	-	n.0000~n.00ff	Anytime	At once
P5-07	Servo OFF delay time	500	1ms	0~65535	Servo bb	At once
P5-08	Brake command output speed	30	rpm	20~10000	Servo bb	At once
P5-09	Brake command wait time	500	ms	0~65535	Servo bb	At once

(1) Hardware wiring

The ON/OFF circuit of the brake is composed of the sequential output signal of the servo unit "/BK" and "brake power supply". A typical connection example is shown below.

Note:

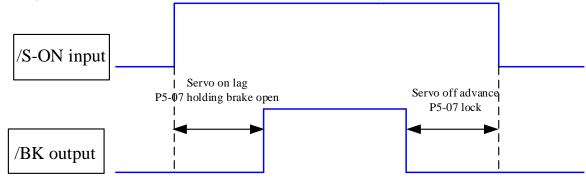
- (1) The excitation voltage of the power-off brake is 24V.
- (2) If the holding brake current is more than 50mA, please transfer it through the relay to prevent terminal burnt out due to excessive current.

(2) Software parameter settings

For the servo motor with holding brake, it is necessary to configure one SO terminal of servo driver as holding brake output /BK function, and determine the effective logic of SO terminal, that is, parameter P5-44 needs to be set.

Parameter setting	Servo status	Signal/BK terminal output logic	Servo motor status	
P5-44=n.000□	Servo bb	Invalid	Holding brake power off, motor in position locked state	
P3-44-II.000	Servo run	Valid	The holding brake power is connected and the motor is in rotatable state	
D5 44 001-	Servo run	Invalid	Holding brake power off, motor in position locked state	
P3-44-n.001	P5-44=n.001 Servo bb Valid		The holding brake power is connected and the motor is in rotatable state	

Note:


- (1) When SO terminal is used to control holding brake, when servo enable is on, holding brake power is on and motor is in rotatable state;
- (2) If the motor fails to rotate during the debugging of the new machine, please confirm whether the holding brake is open.

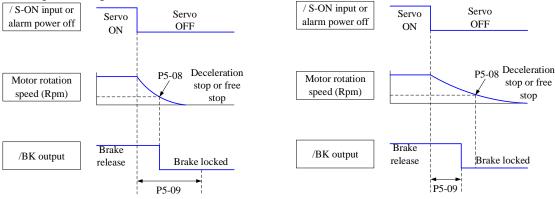
(3) Time sequence of holding brake control

① Holding brake sequence in normal state

Due to the action delay time of the brake, the machine moves slightly under the action of gravity. Use P5-07 parameter to adjust the time, so that the holding brake can be opened or closed in advance.

When setting the servo motor with brake, the output signal "/ BK" of control brake and the time of servo SON signal on/off action are shown in the figure below. That is to say, before the /BK signal outputting and brake is opened, the servo motor has entered the power on enabling state; after the / BK not outputting and brake is locked, the servo motor will turn off the power on state.

Note: the setting made here is the time when TGON of rotation detection is invalid when the motor is stopped.


2 Abnormal state holding brake timing

When the alarm/power supply interruption occurs, the motor quickly becomes non energized. During the time from gravity or inertia to the brake action, the machine will move. To avoid this,

The conditions for the /BK signal to turn from on to off in the motor rotation are as follows (any of the two conditions will take effect):

- 1) After the servo is off, the motor speed is below the set value of P5-08;
- 2) After the servo is off, when the set time of P5-09 is exceeded.

The sequence diagram is as follows:

Since the brake of the servo motor is designed for position holding, it must be enabled at the right time when the motor stops. While observing the action of the machine, adjust the user parameters.

5.2.6 Braking setting

When the servo motor is driven by the generator mode, the power returns to the servo amplifier side, which is called regenerative power. Regenerative power is absorbed by charging the smoothing capacitor in the servo amplifier. After exceeding the rechargeable energy, the regenerative resistance is used to consume the regenerative power.

The servo motor is driven by regeneration (generator) mode as follows:

- > Deceleration stop period during acceleration and deceleration operation;
- When the vertical axis is running downward;
- When the external load drives the motor to rotate.

Related parameter

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P0-24	Discharge resistance type selection (version 3640 and before) 0: built-in 1: external Power protection mode of discharge resistance (version 3700 and later) 0 - cumulative discharge time 1 - average power mode 1 2 - average power mode 2	0	1	0~1	Servo bb	At once
P0-25	Power value of discharge resistance	Set as model	W	1~65535	Servo bb	At once
P0-26	Discharge resistance value	Set as model	Ω	1~500	Servo bb	At once

1. Hardware wiring

1. Hardware wiring						
Power	Hardware terminal	Notes				
100W~400W	P+, C	External resistance	P+			
750W	P+, D	Built in resistor	P+			
750W	P+, C	External resistance	P+			

2. Recommended brake resistance specifications

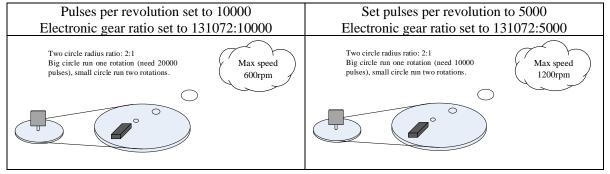
Servo driver model	min resistance (cannot be less than this value)	External regeneration resistance (recommended resistance)	External regeneration resistance (recommended power value)
DS5L1-20P1-PTA	50Ω	50Ω-100Ω	Above 200W
DS5L1-20P2-PTA	3052	3022-10022	Above 200 W
DS5L1-20P4-PTA	40Ω	40Ω - 100Ω	Above 500W
DS5L1-20P7-PTA	4022	4022-10022	Above 500 W

Note:

- (1) The smaller the resistance is, the faster the discharge will be, but it is easy to break down the resistance if it is too small. Therefore, the lower limit should be as close as possible but not less than the lower limit when selecting the type.
- (2) When wiring, please use high temperature resistant and flame-retardant wires, and pay attention that the regenerative resistance surface does not contact with the wires.

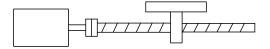
5.3 Position control

5.3.1 General position control


5.3.1.1 Electronic gear ratio

1. Overview

The so-called "electronic gear" function has two main applications:


(1) Determine the number of command pulses needed to rotate the motor for one revolution to ensure that the motor speed can reach the required speed.

As an example of 17-bit encoder motor, the pulse frequency sent by the upper computer PLC is 200kHz:

(2) In the precise positioning, the physical unit length corresponding to 1 command pulse is set for calculation.

For example: the object moves 1um per command pulse. The command pulses of load rotating one circle = 6mm / 1um = 6000. In the case of deceleration ratio is 1:1, set pulse per rotation P0-11=6000, P0-12=0. Then if the PLC outputs 6000 pulses, the object will move 6mm.

Encoder: 131072 (17-bit) ball screw pitch: 6mm

Do not change the electronic gear ratio

Without changing the ratio of the electronic gear to the motor, the rotating cycle is 131072 pulses (P 0-11=0, P 0-12=0). If the workpiece is moved 6 mm in one turn, the number of pulses needed is 131072. If the workpiece is moved 10 mm, it will need 10/6*131072=218453.333 pulses. When the decimal number is omitted, the error will

Change the electronic gear ratio

By changing the electronic gear ratio, the motor needs 6000 pulses to rotate one circle. If the workpiece moves 6 mm in one turn, the number of pulses needed is 6 000. If the workpiece is moved 10 mm, it needs 10/6*6000 = 10000 pulses. When the pulse is sent, the decimal number will not be produced and the error will not be produced.

occur.

Related parameters

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P0-11	Pulse numbers per rotation *1		pul	0~9999	Servo OFF	At once
P0-12	Pulse numbers per rotation *10000	1	pul	0~9999	Servo OFF	At once
P0-13	Electronic gear ratio (numerator)	1	-	0~65535	Servo OFF	At once
P0-14	P0-14 Electronic gear ratio (denominator) P0-92 Group 2 Electronic gear ratio (numerator) low bit*1 P0-93 Group 2 Electronic gear ratio (numerator) high bit*10000		-	0~65535	Servo OFF	At once
P0-92			-	1~9999	Servo OFF	At once
P0-93			-	1~65535	Servo OFF	At once
P0-94 Group 2 Electronic gear ratio (denominator) low bit*1		1	-	1~9999	Servo OFF	At once
P0-95	Group 2 Electronic gear ratio (denominator) high bit*10000	0	-	1~65535	Servo OFF	At once

Note:

(1) P0-11~P0-14 is all about the parameters of electronic gear ratio, P0-11, P0-12 is group 1, P0-13, P0-14 is group 2, but the priority of P0-11 and P0-12 is higher than that of P0-13 and P0-14. Only when P0-11 and P0-12 are set to 0, the ratio of electronic gear P0-13 and P0-14 will take effect.

(2) When P0-11, P0-12, P0-13 and P0-14 are all set to 0, P0-92, P0-93, P0-94 and P0-95 will take effect.

2. Calculation of Pulse Number per Rotation and Electronic Gear Ratio

Steps	Content	Description	
1	Confirm the machine specification	Confirm the deceleration ratio n:m(servo motor rotations while load turns n rotations), ball screw pulley diameter.	
2	Confirm the encoder pulse	Confirm the servo motor encoder accuracy	
3	Set the command unit	Determine the actual distance or angle corresponding pulse of the controller	iding to 1
4	Calculate the command pulses the load shaft rotates 1 circle	Based on the determined command unit, calcommand quantity n of the load shaft rotating for 1 r	
5	Calculate the pulses per rotation M	Command pulse number of motor shaft rotating M=N/(m/n).	for 1 turn
6	Set the pulses per rotation (P0-11/P0-12) or Electronic gear ratio (P0-13/P0-14)/(P0-92~95)	$\begin{array}{c} P0\text{-}11\text{=}M\%10000 \\ P0\text{-}12\text{=}M/10000 \\ \hline \\ \frac{P0-13}{P0-14} = \frac{resolution}{M} = \frac{resolution \times m}{N \times n} \end{array}$	priority

Note:

- (1) In step 6, the effective priority of the number of pulses per revolution is higher than the electronic gear ratio, that is, when $P0-11 \sim P0-12$ are all 0, $P0-13 \sim P0-14$ will take effect. In special cases, if the number of pulses per revolution is calculated as a decimal, the electronic gear ratio should be considered.
- (2) When P0-13 and P0-14 exceed the setting range, please divide the electronic gear ratio into numerator and denominator. If the ratio still exceeds the parameter setting range, please use the second gear ratio P0-92 \sim P0-95. Only when P0-11 \sim 14 = 0, the second gear ratio takes effect.
 - (3) The resolution of DS5 series servo motor encoder is 131072 (17 bits) and 8388608 (23 bits).
- (4) The command unit does not represent the machining accuracy. On the basis of the mechanical accuracy, refining the instruction unit quantity can improve the positioning accuracy of the servo system. For example, when using the lead screw, the mechanical accuracy can reach 0.01mm, so the

unit equivalent of 0.01mm is more accurate than the unit equivalent of 0.1mm.

3. Example of setting the electronic gear ratio

		Ball screw	Round table	Belt + pulley
steps	Name	Load shaft P P: pitch 1rotate = P command unit		Load shaft D: pulley diameter 1rotate = $\frac{\pi D}{\text{command unit}}$
1	Confirm mechanical specifications	Ball screw pitch: 6mm Machine deceleration ratio: 1:1	1-circle rotate angle: 360° Deceleration ratio: 1:3	Pulley diameter: 100mm Deceleration ratio: 1:2
2	Confirm the number of encoder pulses	Encoder resolution 131072	Encoder resolution 131072	Encoder resolution 131072
3	Confirm the command unit	1 command unit: 0.001mm	1 command unit: 0.1°	1 command unit: 0.02mm
4	Calculate the command amount of 1 revolution of load shaft	6mm/0.001mm=6000	360/0.1=3600	314mm/0.02mm=15700
5	Calculate the pulse number m of one revolution of motor shaft	M =6000/(1/1)=6000	M=3600/(3/1)=1200	M=15700/(2/1)=7850
	Set pulses per rotation P0-11/P0-12	P0-11=6000 P0-12=0	P0-11=1200 P0-12=0	P0-11=7850 P0-12=0
6	Set electronic gear ratio (P0-13/P0-14)/ (P0-92~95)	P0-13=131072 P0-14=6000 After reduction P0-13=8192 P0-14=375	P0-13=131072 P0-14=1200 After reduction P0-13=8192 P0-14=75	P0-13=131072 P0-14=7850 After reduction P0-13=65536 P0-14=3925 Conver to second gear ratio P0-92=5536 P0-93=6 P0-94=3925 P0-95=0

5.3.1.2 Positioning completion signal (/COIN, /COIN_HD)

In position control, the signal indicating the completion of servo motor positioning is used when the command controller needs to complete positioning confirmation.

■ Related parameters

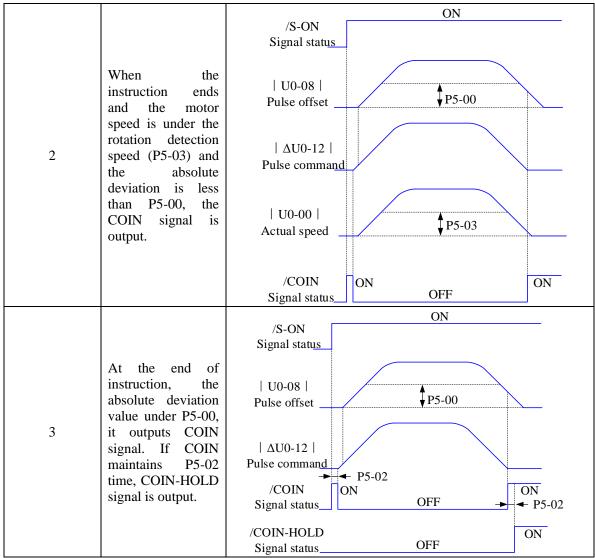
Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P5-00	Positioning completion width	11	Command unit	0~65535	Anytime	At once
P5-01	Positioning completion detection mode	0	-	0~3	Anytime	At once
P5-02	Positioning completion hold time	0	ms	0~65535	Anytime	At once

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-37	/COIN-HD	n.0000	All	Positioning complete holding	Anytime	At once
P5-38	/COIN	n.0000	All	Positioning complete output	Anytime	At once

Refer to section 3.2.2 for hardware wiring details.

If it is necessary to output signal from SO2, P5-37 and P5-38 are set to n.0002/0012. Note that an SO terminal can only be used as a signal function.

1. Conditions for positioning completion signal output


(1) /COIN-HD signal output conditions

When the positioning completion detection mode P5-01 is set to 3, the positioning completion holding /COIN-HD signal can be output. When the /COIN signal holds P5-02 time, the COIN-HD signal can be output.

(2) /COIN signal output conditions

According to the positioning completion detection mode set in P5-01, output positioning completion /COIN signal. The following is the precondition for positioning output and the output diagram.

P5-01 setting	Content	Diagram
0	If the absolute deviation is below P5-00, the COIN signal will be output.	/S-ON signal ON U0-08 Pulse offset P5-00 /COIN
1	After the instruction is finished, the deviation is below P5-00 and COIN signal is output.	ON /S-ON Signal status U0-08 Pulse offset ΔU0-12 Pulse command /COIN Signal status ON OFF

2. Description of positioning completion width

(1) The positioning completion width P5-00 changes proportionally due to the change of electronic gear ratio, and the factory default is 11 command units.

The following table is an example:

Number of command pulses required for one revolution of motor	positioning completion width P5-00
10000 (default)	11 (default)
20000	22
5000	6
3000	4
2000	3

The positioning completion width P5-00 changes proportionally with the number of command pulses required for one revolution of the motor.

The output of the positioning completion signal depends on the positioning completion width. The smaller the width is, the later the positioning completion signal output is, but the signal output does not affect the actual operation state of the motor.

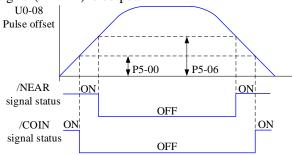
(2) The positioning completion width can also be set separately, and its change will not affect the number of command pulses required for one revolution of the motor.

5.3.1.3 Positioning near signal (/NEAR)

The servo motor is located near the positioning completion signal, so that the equipment can prepare the next action in advance.

Related parameters

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P5-06	Near signal output width	50	Command unit	0~65535	Anytime	At once


Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-46	/NEAR	n.0000	All	Positioning near	Anytime	At once

Refer to section 3.2.2 for hardware wiring details.

If it is necessary to output from the SO2, P5-46 can be set to n.0002/0012.

1. Positioning approach signal output conditions

When the pulse deviation value U0-08 of the servo driver is lower than the P5-06 setting value, the positioning approach signal (/NEAR) is output.

2. Description of approach signal output

(1) The approach signal output width P5-06 changes proportionally due to the change of the electronic gear ratio. The default setting is 11 command units.

The following table is an example:

Number of command pulses required for one revolution of motor	Near signal output width P5-06
10000 (default)	50 (default)
20000	100
5000	25
3000	15
2000	10

The near signal output width P5-06 changes proportionally with the number of command pulses required for one revolution of the motor.

The output of the positioning completion signal depends on the positioning completion width. The smaller the width is, the later the positioning completion signal output is, but the signal output does not affect the actual operation state of the motor

- (2) The approach signal output width can also be set independently, and its change will not affect the number of command pulses required for one revolution of the motor.
- (3) Please set this parameter larger than the positioning completion width.

5.3.1.4 Command pulse prohibition (/INHIBIT)

Position command prohibition, including internal and external position commands. Stop the function of command pulse input during position control. When the /INHIBIT signal is on, the pulse command is no longer counted.

Related parameters

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective			
P5-32	/INHIBIT	n.0000	All	Command pulse prohibition	Anytime	At once			

Parameter range n.0000-001A, assigned to other input terminals by parameter P5-32.

If it is necessary to input from SI2, P5-32 can be set to n.0002/0012. Refer to section 3.2.2 for hardware wiring details.

1. /INHIBIT terminal effectiveness description

Parameter setting status	Signal/INHIBIT terminal input status	Signal/INHIBIT terminal logic
P5-32=n.0000	No external terminal input	
P5-32=n.000□	SI□ terminal has no signal input	Invalid
P5-32=n.001□	SI□ terminal has signal input	
P5-32=n.0010	No external terminal input	
P5-32=n.000□	SI□ terminal has signal input	Valid
P5-32=n.001□	SI□ terminal has no signal input	

2. The influence of /INHIBIT terminal signal on the running state of motor

		Motor operation status					
Control mode		/INHIBIT terminal logic valid	/INHIBIT terminal logic invalid				
5- internal position control		Pause current segment	/INHIBIT signal is from ON→OFF, continue running from pause point.				
6- external position control	oulse	Pause pulse command reception	/INHIBIT signal is from ON→OFF, continue running from the pulse command received after OFF.				

5.3.1.5 Offset clear (/CLR)

Position offset=(position command – position feedback)(encoder unit)

The position deviation clearing function means that the driver can clear the position deviation when the servo is off or the /CLR signal is received.

■ Related parameters

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-34	/CLR	n.0000	All	Pulse deviation clear	Anytime	At once

Parameter range n.0000-001A, assigned to other input terminals by parameter P5-34.

If it is necessary to input signal from SI2, P5-34 can be set to n.0002/0012. Refer to section 3.2.2 for hardware wiring details.

1. /CLR signal effectiveness

parameter setting status	Signal /CLR terminal input status	Signal /CLR terminal logic
P5-34=n.0000	No external terminal input	
P5-34=n.000□	SI□ terminal has no signal input	Invalid
P5-34=n.001□	SI	
P5-34=n.0010	No external terminal input	
P5-34=n.000□	SI□ terminal has signal input	Valid
P5-34=n.001□	SI□ terminal has no signal input	

2. /CLR signal explanation

Send the pulse to the servo, execute the /CLR input signal, the servo will lock the current pulse counts, then update the current position of the encoder to the position feedback in the control, at the same time, clear the intermediate quantity of the position loop, speed loop and current loop.

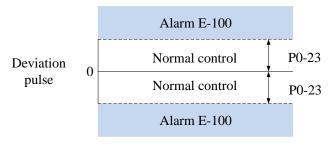
/CLR signal is triggered by edge.

3. Other description of pulse position deviation clearing signal

Setting F0-02 to 1 can also clear the pulse position deviation.

5.3.1.6 Position pulse deviation

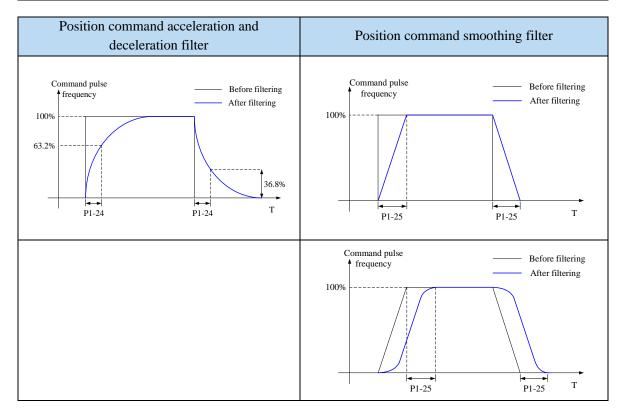
Pulse deviation value refers to the difference between command pulse of command controller


(such as PLC) and feedback pulse of servo unit in position mode. Its unit is 1 command unit, which is related to the command unit determined by electronic gear ratio.

In position control, when the deviation pulse exceeds a certain limit value, an alarm will occur, and this threshold value is the deviation pulse limit value.

Related parameters

parameter	Meaning	Default setting	Unit	Range	Change	Effective
P0-23	pulse deviation limit value	2000	0.01 turns	0~65535	Anytime	At once


When the deviation pulse limit is 0, the deviation pulse will not be detected.

5.3.1.7 Position command filter

Related parameters

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P1-24	Position command acceleration and deceleration filtering time	0	0.1ms	0~65535	Servo OFF	At once
P1-25	Position command smoothing filtering time	0	0.1ms	0~65535	Servo OFF	At once

5.3.1.8 Reference origin

1. Find the reference origin

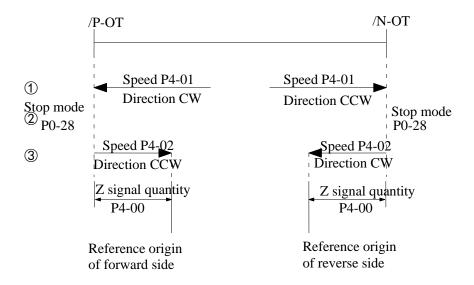
To find out the physical origin of working table and make it as the coordinates origin of point position control. Users can select finding reference origin at forward or reverse side.

Function setting:

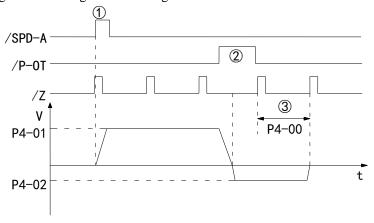
Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P4-00 n.xx□x	Origin function	0	-	0~1	Servo OFF	At once

Note: This function is applicable to position mode 5 and 6; when this parameter is set to 0, the function of Origin-finding is invalid; when it is set to n.001x, the function of Origin-finding can be used.

Signal setting


Parameter	Signal	Default	Meaning	Modify
P5-28	/SPD-A	n.0000	Mode 3: internal speed selecting signal	Range: 0000-0014, distributes to input terminal through P5-28. When it set to 0001, it means
	,,,,,,		Mode 5: find origin point at forward direction	input signal from SI1.
P5-29	/SPD-B	/SPD-B n.0000	Mode 3: internal speed selecting signal	Range: 0000-0014, distributes to input terminal through P5-29.
	, 2 2 2		Mode 5: find origin point at reverse direction	When it set to 0001, it means input signal from SI1.

Related parameter setting:


Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P4-00 n.xxx□	Z phase signal numbers	2	-	0∼f	Servo OFF	At once
P4-01	The speed hitting the proximity switch	600	rpm	0~65535	Servo OFF	At once
P4-02	The speed leaving the proximity switch	100	rpm	0~65535	Servo OFF	At once

Note: the origin searching function is only for single turn absolute motor (the origin searching function can also be supported for multi turn absolute motor P0-79=1).

Find reference origin diagram:

Sequential diagram of finding reference origin on forward side:

Steps:

- (1) Install limit switch at forward and reverse side. At the rising edge of /SPD-A, motor runs forward at the speed of P4-01 to find the reference origin on forward side.
- (2) After the working table hit the limit switch, the motor stop as the mode set by parameter P0-28
- (3) Motor leaves the limit switch at the speed of P4-02. After the working table left the limit switch, the motor run at the Z phase signal position of No.n optical encoder. This position is considered as the coordinates origin, n is decided by parameter P4-00.

5.3.1.9 Homing function

1. Function overview

The return to origin function refers to that when the servo enable is on in the position control mode, after the return to origin function is triggered, the servo motor will find the origin and complete the positioning function. The found origin can be used as the position reference point for subsequent position control.

During the homing operation, other position commands (including the retriggered homing signal) are shielded. After the homing is completed, the servo driver can respond to other position commands.

After the homing is completed, the servo driver outputs the homing completion signal, and the upper computer can confirm that the homing has been completed after receiving the signal.

2. Parameter setting

2. I di di ii	eter setting					
Parameter	Name	Range	Meaning	Set time	Effective	Default
P9-11.0	Z phase numbers	0~F	P9-11.0=0: not find Z phase P9-11.0=1: find one Z phase P9-11.0=2: find two Z phases And so on	Servo OFF	Servo ON	0
P9-11.1	Homing trigger mode	0~2	P9-11.1=0: not trigger homing P9-11.1=1: trigger homing through SI terminal (P5-28) P9-11.1=2: trigger homing after enabling	Servo OFF	Servo ON	0
P9-11.2	Homing mode	0~7	P9-11.2=0: homing mode 0 P9-11.2=1: homing mode 1 P9-11.2=2: homing mode 2 And so on	Servo OFF	Servo ON	0
P9-11.3	Deceleration mode when meeting the overlimit signal	0, 1	P9-11.3=0: decelerate as the setting of P9-14 P9-11.3=1: decelerate at once	Servo OFF	Servo ON	0

Note: P9-11.0 can set up to 15 Z phases. P9-11.1 = 0 means that the homing function cannot be used. This parameter can be understood as the enabling bit of the homing function. Homing modes 1, 3, 5 and 7 are the opposite situation of homing modes 0, 2, 5 and 6 respectively.

Parameter	Name	Range	Unit	Meaning	Set time	Effective	Default value
P9-12	Homing high speed	0~3000	rpm	Return to the origin at high speed, find the deceleration point and execute the mechanical offset	Servo OFF	Servo ON	200
P9-13	Homing low speed	0~1000	rpm	Homing with low speed. This low speed should be low enough not to cause mechanical shock when stopping	Servo OFF	Servo ON	20
P9-14	Homing acc/dec time	0~1000	ms	The acceleration and deceleration time here refers to the time required for 0 to 1000 rpm	Servo OFF	Servo ON	1000
P9-15	Maximum time allowed to return to the origin	0~12000	10ms	If the time spent in the whole process of homing exceeds the time set by this parameter, an alarm will be given. When P9-15 = 0, the timeout alarm will be shielded	Servo OFF	Servo ON	0
P9-16	Touch stop mode homing speed threshold	0~1000	rpm	This parameter is only available for home mode 6 and 7	Servo OFF	Servo ON	2
P9-17	Touch stop mode homing torque threshold	0~300%	%	This parameter is only available for home mode 6 and 7 The base value of the percentage is the rated torque	Servo OFF	Servo ON	100%
P9-18	Touch stop mode homing time threshold	10~1500	ms	This parameter is only available for home mode 6 and 7	Servo OFF	Servo ON	500
P9-19	Quantitati ve pulses low bit	-9999~9999	-	Quantitative pulses low bit	Servo OFF	Servo ON	0
P9-20	Quantitati ve pulses high bit	-9999~9999	-	Quantitative pulses high bit	Servo OFF	Servo ON	0

Parameter	Name	Range	Unit	Meaning	Set time	Effective	Default value
P9-21	New/old homing function selection	0, 1	ı	P9-21=0: old homing function P9-21=1: new homing function	Servo OFF	Power on again	0
P9-22	New homing end filter time	50~10000	ms	When the homing is about to end, this filtering time is required. Wait until the motor stops completely before completely exiting the homing mode. After this filtering time, the return to origin completion signal will be output.	Servo OFF	Servo ON	500

Note: Actual mechanical offset = $P9-19 + P9-20 \times 10000$, P9-19 and P9-20 need same symbol (all positive or negative value). The mechanical offset here is the absolute position of the servo after homing.

Parameter n.xxxx	Name	Meaning	Set time	Effective	Default
P5-22	Forward overtravel signal POT	Forward limit signal in homing mode	Operation setting	Take effect at once	0
P5-23	Reverse overtravel signal NOT	Reverse limit signal in homing mode	Operation setting	Take effect at once	0
P5-54	Homing completion signal	When the homing action and status are completed, the homing completion signal will be output. Even if other modes are executed after the homing is completed, the homing completion signal will not disappear. When the homing is started again, the homing completion signal will disappear.	Operation setting	Take effect at once	0
P5-64	Homing switch signal	The origin switch signal is required in the process of returning to the origin.	Operation setting	Take effect at once	0
P5-28	SI terminal start homing	When P9-11.1=1, P5-28 distributed the SI terminal, the homing can be triggered by SI terminal.	Operation setting	Take effect at once	0

3. New homing mode selection

To use the new homing function, first set P9-21=1, then set the overtravel switch (POT/NOT) and the origin switch. If the mechanical offset (P9-19 and P9-20 are set), please set the offset within the travel range to ensure that the mechanical equipment will not be damaged during the homing process!

The number of Z phases (P9-11.0) and the mechanical offset (P9-19, P9-20) can be valid at the same time. If the number of Z phases (P9-11.0) and the mechanical offset (P9-19, P9-20) are not set to 0, the servo will find the number of Z phases (P9-11.0) first, and then execute the mechanical offset (P9-19, P9-20). If the number of Z phases (P9-11.0) is 0 and the mechanical offset (P9-19, P9-20) is not 0, the servo does not find the Z phase, but executes the mechanical offset (P9-19, P9-20). If the number of Z phases is not 0 but the mechanical offset is 0, the servo will find the Z phase (P9-11.0) without performing the mechanical offset.

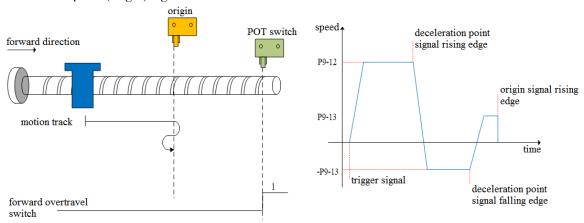
There are 8 homing modes in total, as follows:

- (1) Positive homing, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2 = 0)
- (2) Reverse homing, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2 = 1)
- (3) Positive homing, the deceleration point and origin are motor Z signal (P9-11.2 = 2)
- (4) Reverse homing, the deceleration point and origin are the motor Z signal (P9-11.2 = 3)
- (5) Forward homing, the deceleration point is the forward overtravel switch, and the origin is the forward overtravel switch or motor Z signal (P9-11.2 = 4)
- (6) Reverse homing, the deceleration point is the reverse overtravel switch, and the origin is the reverse overtravel switch or motor Z signal (P9-11.2 = 5)

- (7) Positive homing, the deceleration point is the mechanical limit position, and the origin is the mechanical limit position or motor Z signal (P9-11.2 = 6)
- (8) Reverse homing, the deceleration point is the mechanical limit position, and the origin is the mechanical limit position or motor Z signal (P9-11.2 = 7)

Each homing mode is analyzed in detail below:

1. Homing mode 0 — Positive homing, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2 = 0)

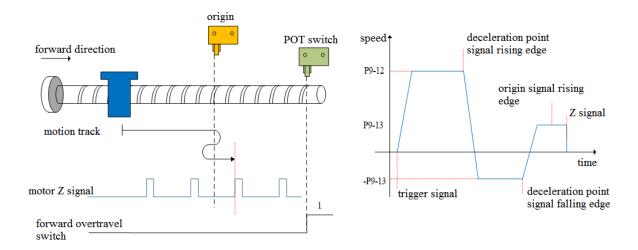

To use this mode, you need to connect pot, not and origin switches.

(a) When the motor starts to move, the signal of the origin switch (deceleration point) is invalid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (POT) (P5-22) is not triggered in the whole process.

Firstly, the servo motor searches the deceleration point (origin) signal in the high-speed forward direction with the set value of P9-12 (homing high speed) until it meets the rising edge of the deceleration point (origin) signal. After gradually decelerating to -P9-13 (homing low speed) according to the setting of P9-14 (homing acceleration and deceleration time), the servo motor searches the deceleration point(origin) signal falling edge in the reverse direction at the low speed set by -P9-13 (homing low speed). When encountering the deceleration point (origin) signal falling edge, it will reverse, and continue to search the deceleration point (origin) signal rising edge at low speed with P9-13 (homing low speed). The next homing action can be divided into four cases:

(a1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

During the operation of continuing to search the rising edge of deceleration point (origin) signal at low speed with P9-13 (homing low speed), stop immediately when encountering the rising edge of deceleration point (origin) signal.



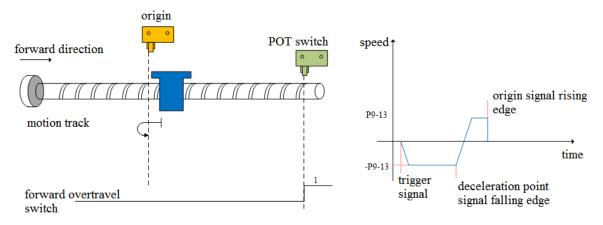
(a2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the operation process of continuing to search the rising edge of deceleration point (origin) signal at low speed with P9-13 (homing low speed), stop immediately when encountering the rising edge of deceleration point (origin) signal. After the motor is completely stopped, the motor will move a quantitative pulse (P9-19, P9-20) with speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor will stop.

(a3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

During the operation of continuing to search the rising edge of deceleration point (origin) signal at low speed P9-13 (homing low speed), continue to run after encountering the rising edge of deceleration point (origin) signal, and then find the first Z-phase signal and stop immediately.

(a4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

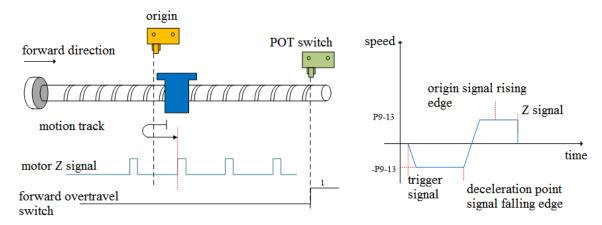

During the operation of continuing to search the rising edge of the deceleration point (origin) signal at low speed P9-13 (homing low speed), continue to run after encountering the rising edge of the deceleration point (origin) signal, then find the first z-phase signal and stop immediately. After the motor is completely stopped, according to the set number of mechanical offset pulses (P9-19, P9-20) and direction (it can be positive direction or negative direction), the motor goes through a quantitative pulses (P9-19, P9-20) at the speed set by P9-12 (homing high speed), and then the motor stops.

(b) When the motor starts to move, the origin switch (deceleration point) signal is valid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (P5-22) is not triggered in the whole process:

The servo motor directly searches for the falling edge of the deceleration point (origin) signal at low speed -P9-13 (homing low speed). If it encounters the falling edge of the deceleration point (origin) signal, it will reverse (i.e. forward), and continue to search for the rising edge of the deceleration point (origin) signal at low speed with P9-13 (homing low speed). The next homing action can be divided into four cases:

(b1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of deceleration point (origin) signal.

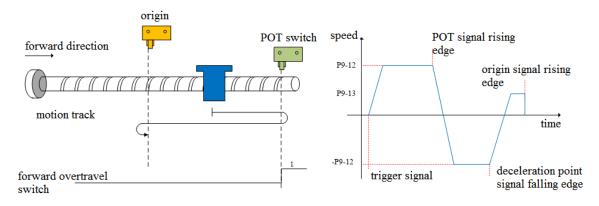


(b2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop immediately after encountering the rising edge of the origin signal. After the motor is completely stopped, according to the set number of mechanical offset pulses and direction (either positive or negative direction), the motor will move a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed), and then the motor will stop.

(b3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, continue to run after encountering the rising edge of the origin signal, and then find the first Z-phase signal and stop immediately.

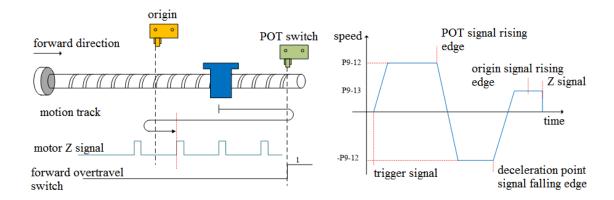

(b4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, continue to run after encountering the rising edge of the origin signal, and then find the first Z-phase signal and stop immediately. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses (P9-19, P9-20) and direction (either positive or negative direction), then the motor stops.

(c) When the motor starts to move, the signal of the origin switch (deceleration point) is invalid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (P5-22) triggered in the process is valid.

Firstly, the servo motor forward searches for the deceleration point signal at high speed P9-12 (homing high speed). After encountering the forward overtravel switch (POT) (P5-22), the driver immediately reverse searches for the falling edge of the deceleration point (origin) signal at the speed -P9-12 (homing high speed) according to the value set by P9-14 (homing acceleration and deceleration time). After encountering the falling edge of the deceleration point (origin) signal, decelerate in the reverse direction (i.e. restore the forward direction) according to the set value of P9-14 (homing acceleration and deceleration time). The servo motor forward searches the rising edge of the deceleration point (origin) signal at low speed of P9-13 (homing low speed). The next action back to the origin can be divided into four cases:

(c1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the origin signal.



(c2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop the machine immediately after encountering the rising edge of the deceleration point (origin) signal. After the motor is completely stopped, the motor will move a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

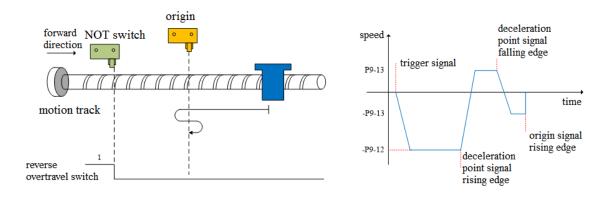
(c3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, continue to run after encountering the rising edge of deceleration point (origin) signal, and then find the first Z-phase signal and stop immediately.

(c4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, continue to run after encountering the rising edge of the deceleration point (origin) signal, and then find the first Z-phase signal to stop immediately. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor stops.

2. Homing mode 1——Reverse return to zero, the deceleration point is the origin switch, and the origin is the origin switch or motor Z signal (P9-11.2=1)

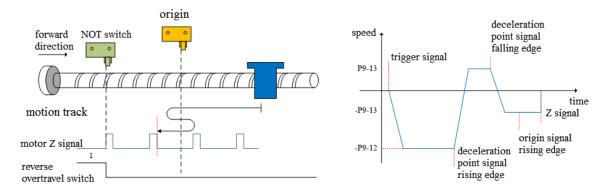

It needs to connect POT, NOT, origin switch to use this mode.

(a) When the motor starts to move, the signal of origin switch (deceleration point) is invalid, and the reverse overtravel switch (NOT)(P5-23) is not triggered in the whole process

Firstly, the servo motor searches for the deceleration point signal at high speed -P9-12 (homing high speed) in reverse until it meets the rising edge of the deceleration point signal. After gradually accelerating to P9-13 (homing low speed) according to the setting of P9-14 (homing acceleration and deceleration time), the servo motor forward searches for the falling edge of deceleration point (origin) signal at the low speed P9-13 (homing low speed). When encountering the falling edge of deceleration point (origin) signal, it will reverse (resume reverse), and continue to search the rising edge of the deceleration point (origin) signal at a low speed -P9-13(homing low speed). The next back to origin action can be divided into four cases:

(a1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

During the operation of continuing to search for the rising edge of deceleration point (origin) signal at low speed -P9-13 (homing low speed), stop immediately when encountering the rising edge of deceleration point (origin) signal.



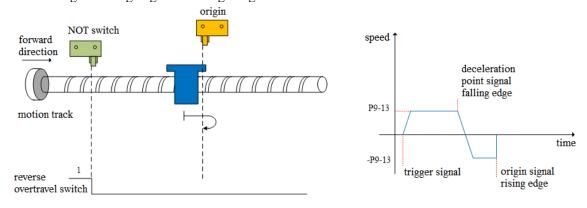
(a2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

During the operation of continuing to search the rising edge of deceleration point (origin) signal at low speed -P9-13 (homing low speed), stop the machine immediately after encountering the rising edge of deceleration point (origin) signal. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor stops.

(a3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

During the operation of continue to search the rising edge of deceleration point (origin) signal at low speed -P9-13 (homing low speed), continue to run after encountering the rising edge of deceleration point (origin) signal, and then find the first Z-phase signal and stop immediately.

(a4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

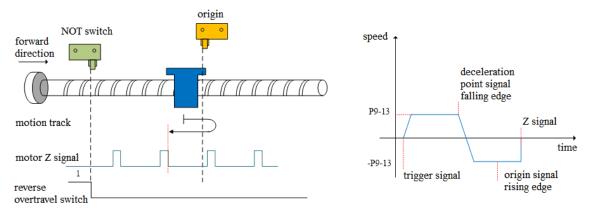

During the operation of continue to search the rising edge of the deceleration point (origin) signal at low speed -P9-13 (homing low speed), continue to operate after encountering the rising edge of the deceleration point (origin) signal, then find the first Z-phase signal and stop immediately. After the motor stops completely, according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), the motor goes through a quantitative pulse (P9-19, P9-20) at the speed P9-12 (homing high speed), and then the motor stops.

(b) When the motor starts to move, the signal of origin switch (deceleration point) is valid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch is not triggered in the whole process (NOT) (P5-23).

The servo motor directly forward searches for the falling edge of the deceleration point (origin) signal at low speed P9-13 (homing low speed). If it encounters the falling edge of the deceleration point (origin) signal, it will reverse (i.e. negative direction), and continue to search for the rising edge of the deceleration point (origin) signal at low speed -P9-13 (homing low speed). The next action of returning to origin can be divided into four cases:

(b1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

In the process of negative acceleration or negative constant speed operation, stop immediately when encountering the rising edge of the origin signal.

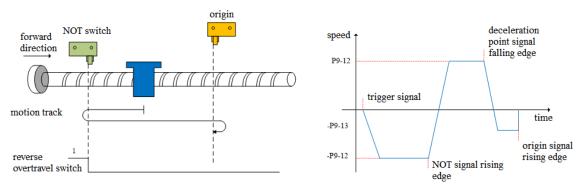

(b2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of negative acceleration or negative constant speed operation, stop the machine immediately after encountering the rising edge of the origin signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), and then stop the motor.

(b3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

During negative acceleration or negative constant speed operation, continue operation after encountering the rising edge of deceleration point (origin) signal, and then stop immediately after

finding the first Z-phase signal.

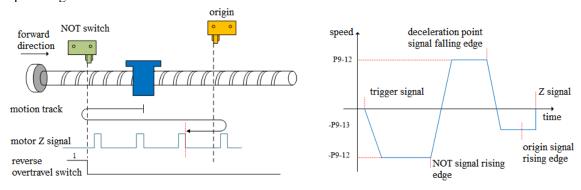

(b4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

In the process of negative acceleration or negative constant speed operation, continue to operate after encountering the rising edge of the deceleration point (origin) signal, and then find the first Z-phase signal to stop immediately. After the motor stops completely, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set mechanical offset pulse numbers and direction (either positive or negative direction), then the motor stops.

(c) When the motor starts to move, the signal of the origin switch (deceleration point) is invalid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch triggered in the process is valid (NOT) (P5-23).

Firstly, the servo motor reverse searches for the deceleration point (origin) signal at high speed -P9-12 (homing high speed). After encountering the reverse overtravel switch (NOT), the driver decelerates in reverse (i.e. forward) according to the value set in P9-14 (homing acceleration and deceleration time), and immediately searches for the falling edge of the deceleration point (origin) signal at high speed P9-12 (homing high speed) in the forward direction. After encountering the falling edge of the deceleration point (origin) signal, decelerate in the reverse direction (i.e. negative direction) according to the set value of P9-14 (homing acceleration and deceleration time), and the servo motor searches the rising edge of the deceleration point (origin) signal in the reverse low speed -P9-13 (homing low speed). The next homing action can be divided into four cases:

(c1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of the origin signal.



(c2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

In the process of reverse acceleration or reverse constant speed operation, stop the machine immediately after encountering the rising edge of the deceleration point (origin) signal. After the motor is completely stopped, the motor will move a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

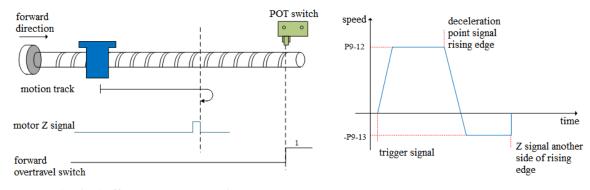
(c3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: In the process of reverse acceleration or reverse constant speed operation, continue the operation after

encountering the rising edge of the origin signal, and then stop immediately after finding the first Z-phase signal.

(c4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

In the process of reverse acceleration or reverse constant speed operation, continue to operate after encountering the rising edge of the deceleration point (origin) signal, and then find the first Z-phase signal to stop immediately. After the motor is completely stopped, the motor will run a quantitative pulse (P9-19, P9-20) at the set speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), then the motor stops.

3. Homing mode 2—forward homing, deceleration point and origin are motor Z signal (P9-11.2=2)


In this mode, the number of Z phases of the motor is not found. To use this mode, you need to connect POT and NOT.

(a) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch (POT) is not triggered in the whole process.

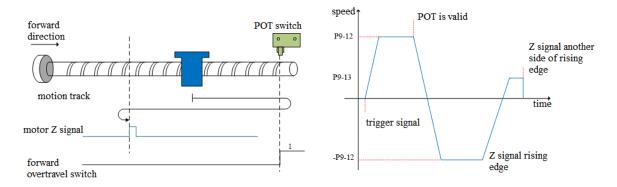
Firstly, the servo motor forward searches the Z signal at the high-speed P9-12 (homing high speed). After encountering the rising edge of the Z signal, it decelerates in the reverse direction according to the set value of P9-14 (homing acceleration and deceleration time), accelerates to -P9-13 (homing low speed) and reverse searches the Z signal at low speed. Next, the homing action is divided into two cases:

(a1) Mechanical offset (P9-19, P9-20) is 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of the other side of the motor Z signal.

(a2) Mechanical offset (P9-19, P9-20) is not 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.


(b) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the forward overtravel switch is triggered in the process (POT) (P5-22).

Firstly, the servo motor searches for the Z signal in forward direction with the high speed P9-12 (homing high-speed speed). After encountering the forward overtravel switch, the driver decelerates in

the reverse direction according to P9-14 (homing acceleration and deceleration time), and searches for the Z signal in the reverse direction with the high-speed -P9-12 (homing high-speed) until encountering the rising edge of the Z signal. The machine gradually decelerates in the reverse direction (i.e. returns to the forward direction) according to P9-14 (homing acceleration and deceleration time). The servo motor searches the rising edge of the other side of the Z signal in the forward direction and low speed P9-13 (homing low speed). The next homing action is divided into two cases:

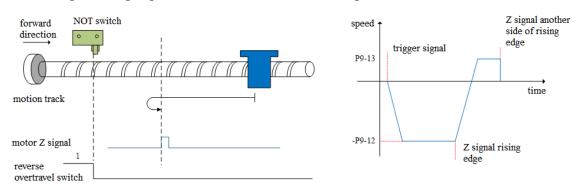
(b1) Mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the other side of the Z signal.

(b2) Mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse at the speed set by P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (either positive direction or negative direction), and then stop the motor.

4. Homing mode 3—reverse homing, the deceleration point and origin are motor Z signal (P9-11.2=3)


In this mode, the number of Z phases of the motor is not found. To use this mode, you need to connect POT and NOT.

(a) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch is not triggered in the whole process (NOT).

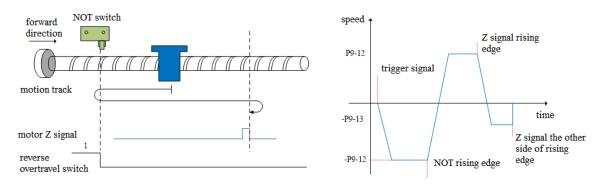
Firstly, the servo motor searches for the Z signal in reverse direction with the high speed -P9-12 (homing high speed). After encountering the rising edge of the Z signal, it decelerates and reverses according to the set value of P9-14 (homing acceleration and deceleration time), accelerates to P9-13 (homing low speed) and searches for the Z signal at low speed in forward direction. Next, the homing action is divided into two cases:

(a1) Mechanical offset (P9-19, P9-20) is 0:

In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the other side of the motor Z signal.

(a2) Mechanical offset (P9-19, P9-20) is not 0:

In the process of positive acceleration or positive constant speed operation, stop the machine immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed set by P9-12


(homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

(b) When the motor starts to move, the Z signal is invalid or valid (P5-64 = 0-invalid, 1-valid), and the reverse overtravel switch is triggered in the process (NOT)

The servo motor searches for the Z signal at high speed -P9-12 (homing high speed) in reverse direction. After encountering the reverse overtravel switch, the driver decelerates and reverses according to P9-14, and then searches for the Z signal at high speed P9-12 (homing high speed) in forward direction until encountering the rising edge of the Z signal, and gradually decelerates and reverses (i.e. restores the reverse direction) according to the set value of P9-14 (homing acceleration and deceleration time). The servo motor searches the rising edge on the other side of the Z signal at low speed -P9-13 (homing low speed) in reverse direction. Next, the homing action is divided into two cases:

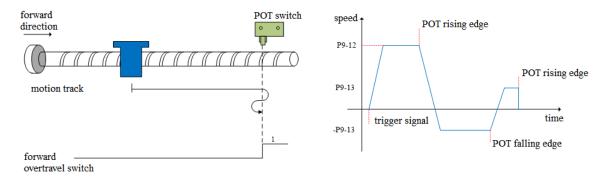
(b1) Mechanical offset (P9-19, P9-20) is 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of the other side of the Z signal.

(b2) Mechanical offset (P9-19, P9-20) is not 0:

In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge on the other side of the motor Z signal. After the motor is completely stopped, the motor will walk a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (either positive direction or negative direction), then the motor stops.

5. Homing mode 4—forward homing, deceleration point and origin are forward overtravel switch POT (P5-22) (P9-11.2=4)

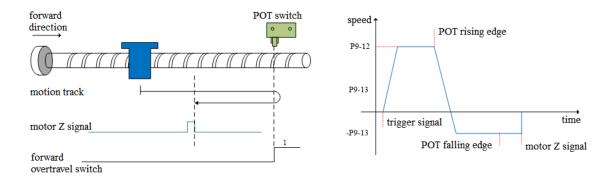

To use this mode, it needs to connect NOT, POT.

(a) When the motor starts moving, the forward overtravel switch (POT) is invalid

Firstly, the servo motor searches the forward overtravel switch at high speed P9-12 (homing high speed). After encountering the rising edge of the forward overtravel switch signal, it gradually decelerates in reverse according to the setting of P9-14 (homing acceleration and deceleration time). The servo motor searches the falling edge of the forward overtravel switch signal in reverse direction at low speed -P9-13 (homing low speed). After encountering the falling edge of the forward overtravel switch signal, the next action of returning to the origin can be divided into four cases:

(a1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

Decelerate in the reverse direction (i.e. restore the forward direction), and search for the rising edge of the forward overtravel switch signal in the forward direction and low speed P9-13 (homing low speed). In the process of forward acceleration or forward constant speed operation, stop immediately when encountering the rising edge of the forward overtravel switch signal.



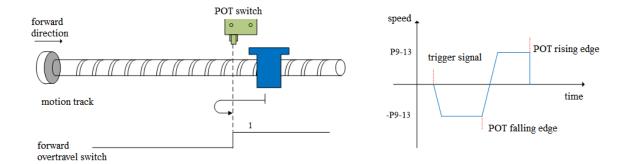
(a2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

Decelerate in the reverse direction (i.e. restore the forward direction), and search the rising edge of the forward overtravel switch signal in the forward with low speed P9-13 (homing low speed). In the process of forward acceleration or forward uniform speed operation, stop immediately when encountering the rising edge of the forward overtravel switch signal. After the motor is completely stopped, motor walks a quantitative pulse at the speed set by P9-12 (homing high speed) according to the set number and direction of mechanical offset pulses (it can only be in the negative direction, that is, it must move between the origin switch and NOT), and then the motor will stop.

(a3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

Continue to operate in reverse at the low speed set by -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

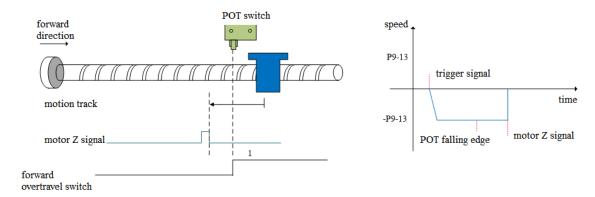
(a4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:


Continue to operate in the reverse direction at the low speed set by -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be negative or positive, but it must move between the origin switch and NOT), and then the motor stops.

(b) Forward overtravel switch is valid when motor starts moving (POT) (P5-22)

The servo motor directly searches for the falling edge of the forward overtravel switch signal (POT) at a reverse low speed -P9-13 (homing low speed). After encountering the falling edge of POT, the next homing action is divided into four cases:

(b1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:


Decelerate in the reverse direction (i.e. restore the forward direction), search for the rising edge of POT in the forward low-speed P9-13 (homing low speed), and stop immediately when encountering the rising edge of POT during forward acceleration or forward constant speed operation.

(b2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

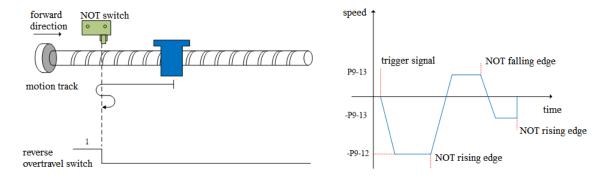
Decelerate in reverse direction (i.e. restore the positive direction), search the rising edge of POT at low speed and positive direction with P9-13 (homing low speed). In the process of positive acceleration or positive constant speed operation, stop immediately when encountering the rising edge of POT. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it only can be negative direction, but it must move between the origin switch and NOT), and then the motor stops.

(b3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: Continue to operate in reverse at the low speed -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

(b4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

Continue to operate in the reverse direction at the low speed -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be negative or positive, but it must move between the origin switch and NOT), and then the motor stops.

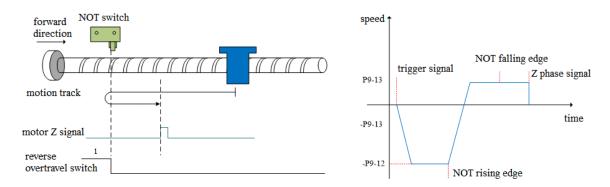
6. Homing mode 5—reverse homing, deceleration point and origin are reverse overtravel switch NOT (P5-23) (P9-11.2=5)


To use this mode, please connect POT, NOT.

(a) When the motor starts moving, the reverse override switch (NOT) is invalid Firstly, the servo motor searches for the reverse overtravel switch (NOT) at reverse high speed -P9-12 (homing high speed). After encountering the rising edge of NOT, it gradually decelerates in reverse according to the setting of P9-14 (homing acceleration and deceleration time). The servo motor searches for the falling edge of NOT at forward low speed P9-13 (homing low speed). After

encountering the falling edge of NOT, the next homing action can be divided into four cases:

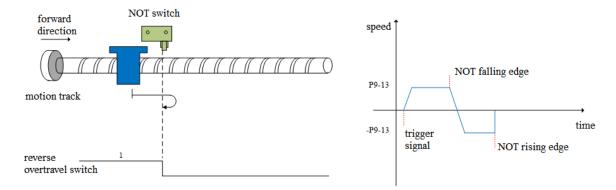
(a1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:


Decelerate in the reverse direction (i.e. restore the reverse direction), and search for the rising edge of NOT at the reverse low speed -P9-13 (homing low speed). In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT.

(a2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

Decelerate in the reverse direction (i.e. restore the reverse direction), and search for the rising edge of the reverse overtravel switch signal (NOT) at the reverse low speed -P9-13 (homing low speed). In the process of reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it only can be positive, but it must move between the origin switch and POT), and then the motor stops.

(a3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: Continue to operate in the forward low-speed P9-13, and then stop immediately after encountering the rising edge of the first Z-phase signal.

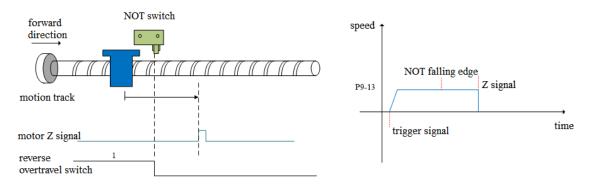


(a4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

Continue to operate in the forward low-speed P9-13, and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be positive or negative), but it must move between the origin switch and POT), and then the motor stops.

- (b) When the motor starts to move, the reverse overtravel switch (NOT) (P5-23) is valid The servo motor directly searches for the falling edge of the reverse overtravel switch signal (NOT) at the forward low speed P9-13 (homing low speed). After encountering the falling edge of NOT, the next homing action is divided into four cases:
- (b1) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0:

Decelerate in reverse direction (i.e. resume reverse direction), search for the rising edge of NOT in reverse direction at low speed -P9-13(homing low speed). During reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT.



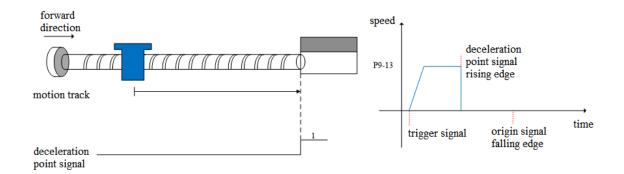
(b2) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0:

Decelerate in reverse direction (i.e. recover in reverse direction), search for the rising edge of NOT in reverse direction at low speed -P9-13 (homing low speed). During reverse acceleration or reverse constant speed operation, stop immediately when encountering the rising edge of NOT. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it only can be positive), but it must move between the origin switch and POT), and then the motor stops.

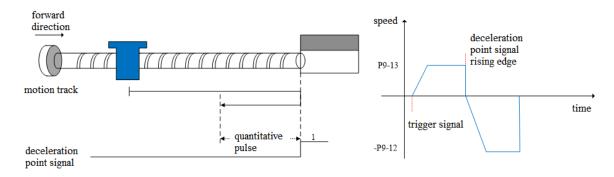
(b3) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0:

Continue to operate at the forward low speed P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

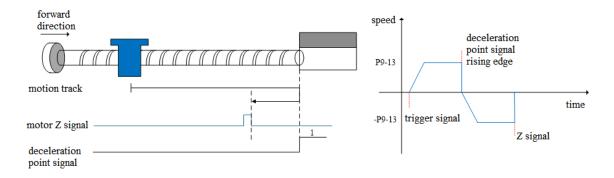
(b4) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:


Continue to operate at the forward low speed P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After the motor stops completely, the motor will move a quantitative pulse at the speed P9-12 (homing high speed) according to the set number of mechanical offset pulses and direction (it can be positive or negative, but it must move between the origin switch and POT), and then the motor stops.

7. Homing mode 6—forward homing, deceleration point and origin are forward mechanical limit position (P9-11.2=6)


To use this mode, no need to connect POT, NOT and origin switch.

Firstly, the servo motor runs forward at low speed P9-13 (homing low speed). After hitting the mechanical limit position, if the absolute value of torque reaches the upper torque limit of P9-17 (touch stop homing mode torque threshold), and the absolute value of speed is lower than the set value of P9-16 (touch stop homing mode speed threshold), this state remains P9-18 (touch stop homing mode time threshold) After the set time, it is judged that the mechanical limit position is reached, and the next homing action can be divided into four cases:

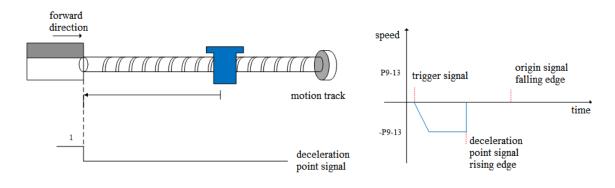

(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: Shut down immediately.

(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0: The servo motor stops immediately. After it stops completely, according to the set number of mechanical offset pulses, the motor reverse moves a quantitative pulse (P9-19, P9-20) at the speed set by -P9-12 (homing high speed), and then the motor stops.

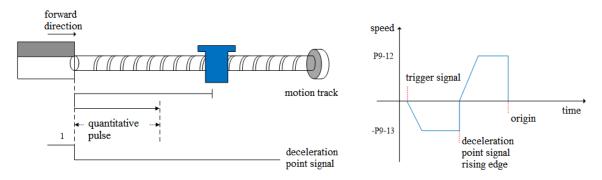
(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: Operate in reverse at the low speed set by -P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0:

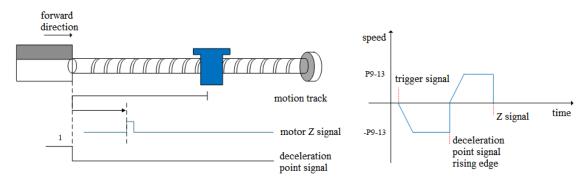
Run in reverse at the low speed set by -P9-13 (homing low speed), then stop immediately after encountering the rising edge of the first Z-phase signal, and then walk a quantitative pulse (it can run in positive direction or negative direction, but it must be within the mechanical limit position) at the speed set by -P9-12 (homing high speed) according to the set number of mechanical offset pulses after complete stop, and then the motor stops.


8. Homing mode 7—reverse homing, deceleration point and origin are reverse mechanical limit position (P9-11.2=7)

To use this mode, no need to connect POT, NOT and origin switch.


Firstly, the servo motor runs in reverse direction with the low speed -P9-13 (homing low speed). After hitting the mechanical limit position, if the absolute value of torque reaches the upper torque limit of P9-17 (touch stop homing mode torque threshold), and the absolute value of speed is lower than the set

value of P9-16 (touch stop homing mode speed threshold), this state remains P9-18 (touch stop homing mode time threshold). After the set time, it is judged that the mechanical limit position is reached, and the next action of returning to the origin can be divided into four cases:


(a) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is 0: Shut down immediately.

(b) Z phase number (P9-11.0) is 0 and mechanical offset (P9-19, P9-20) is not 0: The servo motor stops immediately. After it stops completely, the motor moves forward a quantitative pulse (P9-19, P9-20) at the speed set by P9-12 (high speed back to the origin) according to the set number of mechanical offset pulses, and then the motor stops.

(c) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is 0: Operate in the forward direction at the low speed P9-13 (homing low speed), and then stop immediately after encountering the rising edge of the first Z-phase signal.

(d) Z phase number (P9-11.0) is 1 and mechanical offset (P9-19, P9-20) is not 0: Operate in the forward direction with low-speed P9-13 (homing low-speed), and then stop immediately after encountering the rising edge of the first Z-phase signal. After complete stop, the motor will walk a fixed pulse (P9-19, P9-20) at the speed set by P9-12 (homing high-speed) according to the set number of mechanical offset pulses (it can operate in positive direction or negative direction, but it must be within the mechanical limit position), and then the motor stops.

Note: only for homing mode 6 and 7.

For homing modes 6 and 7, once these two homing modes are triggered, the maximum torque during homing is 1.1 times of the set value of P9-17 (touch stop homing torque threshold). If the internal

forward and reverse torque limits P3-28 and P3-29 are smaller than 1.1 times of the set value of P9-17 (touch stop homing torque threshold), the torque limit is the set value of P3-28 and P3-29. Similarly, if the external forward and reverse torque limits P3-30 and P3-31 are enabled, the actual torque limit is the minimum of the internal torque limit, the external torque limit and 1.1 times of the P9-17 set value.

Only when these two homing modes are triggered, 1.1 times of the set value of torque limit P9-17 (touch stop homing torque threshold) will take effect. If only the homing is enabled and (homing mode) P9-11.2 is 6 or 7, but the homing is not triggered, 1.1 times of the set value of torque limit P9-17 (touch stop homing torque threshold) will not take effect.

5.3.2 Position control (external pulse command)

Parameter	Overview	Reference chapter
P0-01 control mode selection	Set to 6: external pulse mode	5.3.2.1
P0-10 pulse instruction form	Set the pulse form	5.3.2.2
	0-CW/CCW	
	1-AB	
	2-P+D	
P0-11 Motor pulse numbers per rotation*1	Setting of command pulse number required	5.3.2.2
P0-12 Motor pulse numbers per	for one revolution of motor	
rotation*10000	P0-11 and P0-12=0, P0-13/P0-14 are	
P0-13 Electronic gear ratio (numerator)	effective	
P0-14 Electronic gear ratio (denominator)	P0-11~P0-14 are 0, P0-92~P0-95 are	
P0-92~P0-93 32-bit electronic gear ratio	valid	
(numerator)	32-bit electronic gear ratio (numerator):	
P0-94~P0-95 32-bit electronic gear ratio	P0-92*1 + P0-93 *10000	
(denominator)	32-bit electronic gear ratio denominator:	
	P0-94*1 + P0-95 *10000	
P0-09 Pulse command setting	You can set the command direction and	5.3.2.2
	filter time of low-speed pulse respectively	

5.3.2.1 External pulse position mode

Parameter	Setting value	Meaning	Modify	Effective
P0-01	6	Control the position by external pulse	Servo OFF	At once

5.3.2.2 Forward direction of pulse instruction and pulse form

1. set the forward direction of pulse instruction

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P0-09.0 n.xxx□	forward direction of pulse instruction	0	1	0/1	Servo bb	Re-power on

P0-09 will change the counting direction of the internal counter in the servo system. The counting direction determines the rotation direction of the motor. Therefore, this parameter can be adjusted if the actual rotation direction of the motor is different from the expected direction in the position mode.

Parameter	Meaning	Default setting	Unit	Range	Change	Effective	
P0-09.2	Low speed pulse	F	4.167ns	0~F	Servo bb	Re-power	
n.x□xx	command filter time	1	4.107113	0-1	SCI VO DO	on	
P0-09.2 is pulse filter time. It can enhance the anti-interference ability of low-speed pulses (less than							

200K). When the input is less than 700K, the maximum filtering time F is recommended. When the input pulse frequency exceeds 1M, the filtering time should not be more than 7.

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P0-09.3 n.□xxx	Predistribution of input pulse command filter	1	-	0~7	Servo bb	Re-power on

P0-09.3 setting value is n (range is $0\sim7$), the received pulse number is 2^- n of normal one. The received frequency is 2^- n of original one.

For example, pulse number per rotation is 10000, sending frequency is 10KHz, pulse number is 10000, when P0-09=1000, then U0-12=5000, U0-00 is 2^n of original one.

2. set the pulse instruction form

Parameter	Meaning	setting	Meaning	Change	Effective
DO 10	Pulse	0	CW, CCW mode		
P0-10	command	1	AB phase	Servo bb	At once
n.xxx□	form	2	Pulse + direction (defaulted)		

3. Logical form of instruction pulse

P0-10.0	Forward rotation	Reverse rotation
0: CW/CCW	CCW OFF	CCW
0: CW/CCW	CW	CW OFF
1: AB	90° Phase A	90° Phase A
	Phase B	Phase B
2 0.0	pulse	pulse
2: P+D	direction ON	direction OFF

4. Pulse specification

Pulse specification		Highest input frequency	Voltage	Forward current	
I avv amand mulan	Differential signal	500Kpps	3.3~5V	<25mA	
Low speed pulse	Open collector	200Kpps	24V	<25mA	

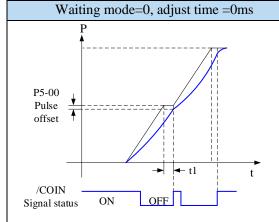
5.3.3 Position control (Internal command)

Parameter	Overview	Reference chapter	
P0-01 control mode selection	Set to 5: internal position	5.3.3.1	
	mode		
P4-03 internal position mode	Control mode setting of	5.3.3.3	
P4-04 valid segment number	internal position mode:		
P4-10~P4-254 internal position 1	including step change mode,		
to 35 parameters	positioning mode and		
	adjustment time		

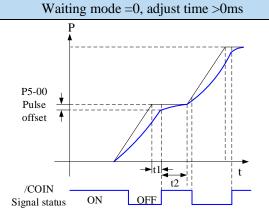
	Configuration of pulse displacement, speed,	
	acceleration and deceleration	
D5 25 1	time of each segment	5 2 2 4
P5-35 change step	Common terminal function	5.3.3.4
signal/GHGSTP	assignment	5.3.1.4
P5-32 pause present segment		5.3.3.5
signal /INHIBIT		
P5-31 jump present segment		
signal /Z-CLAMP		
P4-00 number of Z-phase signal	Internal position back to	5.3.1.8
after leaving limit switch	origin setting parameters	
P4-01 speed of hitting the		
proximity switch		
P4-02 speed of leaving proximity switch		
P5-28 /SPD-A: find reference		
origin on forward side in position		
mode		
P5-29 /SPD-B: find reference		
origin on reverse side in position		
mode		
F2-09 35 segments position	Set segment no. by	5.3.3.6
setting	communication	

5.3.3.1 Internal position mode

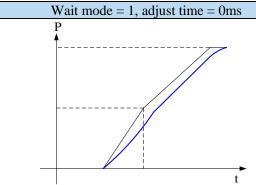
Parameter	Setting value	Meaning	Change	Effective
P0-01	5	Position control by preset values of internal registers in servo units	Servo bb	At once

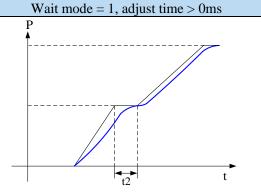

5.3.3.2 Internal position mode setting

Parameter	Function	Unit	Default setting	Suitable mode	modify	Effective
	Internal position mode setting		n.0000	5	Servo bb	At once
	Parameter setting	Meaning	Default setting	Setting range		
	n.□xxx	No meaning				
P4-03	n.x□xx	Waiting mode	0		0~1	
	n.xx□x	Change step mode	0	0~6		
	n.xxx□	Positioning mode	0	0~1		

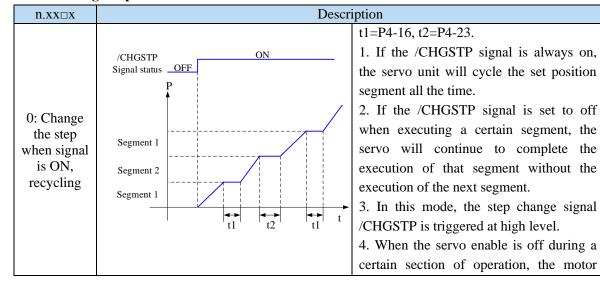

1. waiting mode

0	
n.x□xx	Meaning
0	Wait for positioning completion
1	Not wait for positioning completion


Note: Waiting mode refers to whether the driver waits for the motor to be positioned after outputing a position instruction in internal position mode. It takes effect in all Step-Changing modes.


After the drive output 1-segment position command, it will wait for the completion of motor positioning, and then start the next position command at once. T1 is positioning time, which means the time from pulse output complete to the output of positioning completion signal.

After the drive output 1-segment position command, it will wait for the completion of motor positioning, and pass the adjust time, then start the next position command. T1 is positioning time, t2 is adjust time. Refer to parameter P4-11.



After the drive output 1-segment position command, it will not wait for the completion of motor positioning, and start the next position command at once.

After the drive output 1-segment position command, it will not wait for the completion of motor positioning, but pass the adjust time, and then start the next position command. T2 is adjust time. Refer to parameter P4-11.

2. change step mode

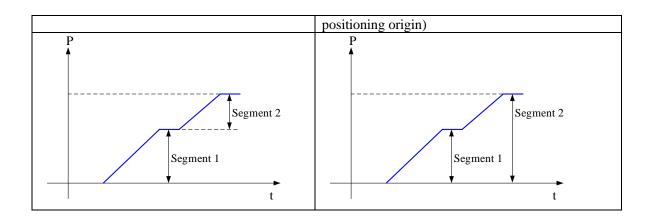
n,xx□x	stops according to the servo off shutdown mode. After the shutdown, the positioning is invalid. 5. After each operation completion, positioning completion and positioning approach signal are all effective. 6. In this mode, the adjustment time of each period is valid. Description
II,XXUX	Take setting two segments as an example,
1: Change the step at the rising edge of the signal, single-step execution	t1 = p4-16 in the figure. 1. Note that as shown in the figure, in this mode, the set adjustment time actually does not work. As long as the previous position command has been sent out, the next command will be entered immediately when a new step change signal arrives. 2. In this mode, the step change signal /CHGSTP is triggered by rising edge. 3. After each operation completion, positioning completion and positioning approach signal are all effective. 4. When the servo enable is off during a certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, the positioning is invalid. 5. The adjustment time is not valid in this mode.
2: Start at the rising edge of the signal, sequential run all, not recycling	Take setting two segments as an example, t1 = p4-16 in the figure. 1. The /CHGSTP signal before the completion of a cycle will not be counted, as shown in the second /CHGSTP signal in the figure. 2. In this mode, the step change signal /CHGSTP is triggered by rising edge. 3. After each operation completion, positioning completion and positioning approach signal are all effective. 4. When the servo enable is off during a certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, the positioning is invalid. 5. The adjustment time is valid in this mode.

stops according to the servo off shutdown

3: set segment no. Servo is ON, set parameter P2-09=0, then set the running segment. The motor will run through the setting segment. Refer to chapter 5.4.8. communica tion t1 = p4-16 in the figure. 1. /CHGSTP rising edge triggers the first segment and falling edge triggers the second segment. Where, if the first segment position is required to operate completely, the /CHGSTP signal remains on until the end of the first segment. /CHGSTP Signal status OFF 2. Only in this mode, the number of p4-04 valid segments is invalid. 3. After each operation completion, 4: positioning completion and positioning /CHGSTP approach signal are all effective. double edge 4. When the servo enable is off during a triggering certain section of operation, the motor stops according to the servo off shutdown mode. After the shutdown, positioning is invalid. 5. The adjustment time is not valid in this 6. Before using this mode, p5-35 terminals need to be allocated first, but not when using this mode. /PREFC /PREFB /PREFA Segment no. 0 0 0 0 0 1 1 (segment 1 position) /PREFA(P5 0 0 2 (segment 2 position) -57) 0 3 (segment 3 position) /PREFB(P5 1. After each operation completion, positioning completion and positioning approach -58) signal are all effective. /PREFC(P5 2. When the servo enable is off during a certain section of operation, the motor stops -59) according to the servo off shutdown mode. After the shutdown, the positioning is Choose the invalid. segment 3. The adjustment time is valid in this mode. through 4. /CHGSTP signal is invalid only in this mode. terminal, 5. The segment number selection terminal can not only trigger the step change at the the range is edge, but also keep on state. This mode supports continuous and repeated triggering of a segment certain segment. If the segment number selection terminal remains on, the motor stops 1~3 after encountering the overtravel signal, it is necessary to change the segment number

selection terminal to off, otherwise, the motor will execute the position segment after

the overtravel signal is cancelled.


	1					
		/PREFD	/PREFC	/PREFB	/PREFA	Segment no.
		0	0	0	0	1 (segment 1 position)
		0	0	0	1	2 (segment 2 position)
		0	0	1	0	3 (segment 3 position)
		0	0	1	1	4 (segment 4 position)
		0	1	0	0	5 (segment 5 position)
		0	1	0	1	6 (segment 6 position)
6:		0	1	1	0	7 (segment 7 position)
/PREFA(P5		0	1	1	1	8 (segment 8 position)
-57)		1	0	0	0	9 (segment 1 position)
/PREFB(P5		1	0	0	1	10 (segment 2 position)
-58)		1	0	1	0	11 (segment 3 position)
/PREFC(P5 -59)		1	0	1	1	12 (segment 4 position)
/PREFD(P5		1	1	0	0	13 (segment 5 position)
-60)		1	1	0	1	14 (segment 6 position)
Choose the		1	1	1	0	15 (segment 7 position)
segment		1	1	1	1	16 (segment 8 position)
through	Not	e: the rising	edge of P5-	35 step chan	ge signal tr	iggers each position (the rising edge
terminal,	is ir	nvalid during	operation).			
the range is	1. V	When the ser	vo enable i	s off during	a certain se	ection of operation, the motor stops
segment	acco	ording to the	e servo off	f shutdown	mode. Afte	r the shutdown, the positioning is
1~16.	inva	alid.				
		he adjustmer				
				mpletion, po	sitioning co	ompletion and positioning approach
		nal are all effe				
						edge of P5-35/CHGSTP step change
					osition segr	ment, and the step change triggering
		ing segment of				
						tage level valid. Input high voltage
	leve	el is valid, inp	out low volt	tage level is i	nvalid.	

The following input signal can switch the segment 1 to 3 or 1 to 16:

The following input signal can switch the segment 1 to 3 or 1 to 16:									
Parameter	Signal	Default	Suitable	Setting range	Modify	Effective			
	name	setting	mode						
P5-57	/PREFA internal position segment 1	n.0000	5	Range 0000-0014, distribute to input terminal through P5-57					
P5-58	/PREFB internal position segment 2	n.0000	5	Range 0000-0014, distribute to input terminal through P5-58	Anytime	At once			
P5-59	/PREFC internal position segment 3	n.0000	5	Range 0000-0014, distribute to input terminal through P5-59	Anyume	At once			
P5-60	/PREFD internal position segment 4	n.0000	5	Range 0000-0014, distribute to input terminal through P5-60					

3. Positioning mode

n.xxx□	Meaning						
0	Relative positioning						
1	Absolute positioning						
0: relative positioni	1: absolute positioning (take the reference origin as the absolute						

5.3.3.3 Position segment 1 to 35 parameter settings

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P4-10+ (n-1) *7	Pulse number (low bit)	0	1 pulse	-9999~9999	Servo bb	At once
P4-11+ (n-1) *7	Pulse number (high bit)	0	10000 pulses	-32767~32767	Servo bb	At once
P4-12+ (n-1) *7	Speed	0	0.1rpm	0~65535	Servo bb	At once
P4-13+ (n-1) *7	Trapezoid acceleration time	0	ms	0~65535	Servo bb	At once
P4-14+ (n-1) *7	Trapezoid deceleration time	0	ms	0~65535	Servo bb	At once
P4-15+ (n-1) *7	Reserved					
P4-16+ (n-1) *7	Adjust time	0	ms	0~65535	Servo bb	At once

Notes

- 1. Set pulse number = pulse number (high bit) $\times 10000$ + pulse number (low bit).
- 2. In formula P4-10+(n-1)*7, n is the segment no. of internal position; the range is 1~35. Segment 1~12 can be set through the operate panel, segment 13~35 needs to write in parameters through communication (RS232 or RS485).
- 3. In the relative positioning mode, if the pulse high position is set to 9999, the pulse low position is set to 9999, or the pulse high position is set to 9999, and the pulse low position is set to 9999, and p4-03.3 = 1 (do not wait for the positioning to be completed), the infinite pulse mode will be entered. On the contrary, the number of pulses is limited.
- 4. If one of the segment speed is zero, servo will skip this segment and run the next segment.
- 5. In relative positioning mode, if one segment speed is not zero but the pulse number is zero, the motor will not run, but the wait mode is effective. The servo will run the next segment when the adjust time is out.
- 6. In absolute positioning mode, if one segment speed is not zero but the pulse number is zero, the motor will return to the reference origin with the speed of this segment.
- 7. In absolute positioning mode, if two consecutive segments speed are not zero, but the pulse number is the same, the servo motor will not run but the wait mode is effective.
- 8. In the absolute positioning mode, the number of rotations of the motor is limited and cannot be unlimited.
- 9. At present, there are only two kinds of velocity in the internal position mode: step speed and slope speed. When the trapezoidal acceleration time and trapezoidal deceleration time are set to 0, it is in the form of step speed. When the trapezoidal acceleration time and trapezoidal deceleration time are greater than 0, it is in the form of slope speed.
- 10. Trapezoidal acceleration time and trapezoidal deceleration time refer to the time required to change from 0 to rated speed.

- 11. If the speed of a certain parameter set is 0, the position command of this section will be ignored in the step change mode of 0/1/2. However, in the mode of 4/5/6, the motor does not rotate when the step change is triggered at this section.
- 12. In the internal position section parameters, the position commands of pulse settings are still affected by the electronic gear ratio. The actual number of turns of the motor should be determined by combining the set pulse command and the electronic gear ratio.
- 13. In the absolute positioning mode, the starting position of each step change is based on the starting position of the first triggering step change. In the relative positioning mode, the starting position of each step change is based on the position at the end of the last step change.
- 14. In the relative positioning mode, the infinite pulse position segment can be set in the 35 segment positions. The motor will run continuously in this segment, unless the trigger skips the current segment.

Parameter	Meaning	Default setting	Range	Change	Effective
P4-04	Effective segment	0	0~35	Servo bb	At once

There are 35 sections in total in the internal position. If 10 sections need to be operated and 5 sections need to be operated switched for use due to process requirements, the effective segment can be set. For example, parameters are set for sections 1-10, and P4-04 is set to 5, that is, the position of section 1-5 is valid; if it is set to 10, the position of section 1-10 is valid.

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P4-08	Internal position mode start segment number	1	-	0~35	Servo bb	At once

P4-08 sets the starting operation section number after the first round, and it is valid when the change mode P4-03.1 is set to 0 and 1. The settings are explained below, and valid values are set for No.1-No.8 sections.

Change step mode	Setting	Parameter	Actions			
P4-03.1=0	P4-08=0 or P4-08>P4-04	P4-08=8 P4-04=4	Segment Segmen			
	1≤P4-08≤P4-04	P4-08=2 P4-04=4	Segment Segmen			
P4-03.1=1	P4-08=0 or P4-08>P4-04	P4-08=8 P4-04=4	Segment Segment Segment end 1 2 3 4			
14-03.1-1	1≤P4-08≤P4-04	P4-08=2 P4-04=4	Segment Segment Segment Segment Segment 3 4			

When using skip current segment function, the SI terminal assigned by P5-31 needs rising edge trigger.

5.3.3.4 Change step signal (/CHGSTP)

Parameter	Name	Setting	Meaning	R	ange	
P5-35	Change step signal	n.0000	Defaulted is not distribute to input terminal. Refer to chapter 5.4.2.	Range: Distribute	0000 to	0-0014. input

/CHGSTP	terminal through P5-35.
	When it set to 0001, it
	means input from SI1.

5.3.3.5 Skip present segment signal (/ZCLAMP)

Parameter	Signal name	Setting	Meaning	Range
P5-31	Skip the present segment /Z-CLAMP	n.0000	Defaulted is not distribute to input terminal.	Range: 0000-0015. Distribute to input terminal through P5-31. When it set to 0001, it means input from SI1.

In different Step-Changing modes, the function of skipping the current segment will have different effects, as follows:

Change step mode P4-03 n.xx□x	Skip the present segment	Actions
0		Cancel current segment, execute the next segment at once
1		Cancel current segment, execute the next segment when the change step signal is ON
2		Cancel current segment, execute the next segment at once
3	/Z-CLAMP	Cancel current segment, set the F2-09 again
4	/Z-CLAIVII	The current segment is cancelled and the next segment is executed on the falling edge of the /CHGSTP step change signal
5		If the current segment is cancelled, the corresponding segment will be executed after selecting other segments
6		The current segment is cancelled, the selected position segment is executed at the rising edge of /CHGSTP step signal

5.3.3.6 Set segment through communication

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
F2-09	Set the segment number through communication	0	-	0~35	Anytime	At once

If this parameter is set to a certain segment number, this segment position will be executed without step change signal. Communication can be used to modify parameters.

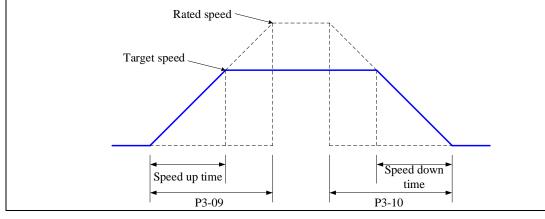
For example: to execute the second segment position, set F2-09 = 0, and then F2-09 = 02.

5.3.3.7 Motion start signal (/MRUN)

Parameter	Signal name	Default setting	Meaning	Modify
P5-50	Motion start /MRUN	n.0000	Terminal output is not assigned by default. It is only valid in the internal position mode, similar to the positioning completion signal in the external pulse mode; there is output when the motor is running, and there is no output when the motor stops.	Parameter range 0000-0014, assigned to the output interface through parameter P5-50. When it is set to 0001, the signal is output from SO1 terminal.

5.4 Speed control

5.4.1 Speed mode general control


5.4.1.1 Soft start

Parameter	Meaning	Defaulted setting	Unit	Range	Modify	Effective
P3-09	Soft Start Acceleration Time	0	ms	0~65535	Servo bb	At once
P3-10	Soft Start deceleration Time	0	ms	0~65535	Servo bb	At once

Soft start acceleration and deceleration time is suitable for mode 3/4/7. Smooth speed control can be carried out when step speed instruction is input or internal setting speed is selected.

P3-09: Time from stop to rated speed

P3-10: Time from rated speed to stop

5.4.1.2 Zero clamp (/ZCLAMP)

1. Overview

This function is used when host controller uses speed command input and the servo system isn't configured the position loop. In other words, the function will be used when the motor must stop and enter lock state even the V-REF input voltage is not zero.

When set ON the zero clamp function, it will configure the position loop inside the servo, the motor will do zero clamp within ± 1 pulse at this position. The motor will return to zero clamp position even it is run by external force.

The present speed must be smaller than zero clamp speed when using zero clamp function, it can clamp the motor shaft from moving. The motor will switch from speed mode to position mode when starting the zero clamp function. At this time, rotate the motor shaft, it will return to the original position. It will not return to original position in speed mode, because it has no position feedback.

2. Input signal setting

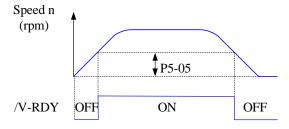
Parame ter	Signal	Setting	Meaning	Range
DE 21	Zero clamp	n.0000 (default)	Defaulted is not distribute to input terminal	/Z-CLAMP signal is distributed to input
P5-31	/ZCLAMP	n.0002	Input signal from SI2 terminal	terminal by parameter P5-31, Range: 0000-0014.

3. Parameter setting

et i ai aiiice	5.1 ti tilineter setting							
parameter	Meaning	Default setting	Unit	Range	Change	Effective		
P3-13	Zero clamp speed	10	rpm	0~300	Servo bb	At once		
P3-12	Zero clamp mode	0	-	0~3	Servo bb	At once		

P3-12 setting	Contents
0	ZCLAMP input signal is ON, forced speed command is 0, when the speed below P3-13, switch to position mode and the servo lock in this position.
1	ZCLAMP input signal is ON, forced set the speed command to 0.
2	ZCLAMP input signal is ON, the speed below P3-13, switch to position mode and the servo lock in the position. Note: after entering zero clamp mode, present setting speed is higher than P3-13, motor doesn't run, the ZCLAMP signal must be OFF, then motor will run again.
3	ZCLAMP signal is ON, the setting speed is less than P3-13, switch to position control mode, and servo is locked at this position. At this time, if setting speed is over P3-13, the motor will run again.

5.4.1.3 Speed reach signal (/V-RDY)

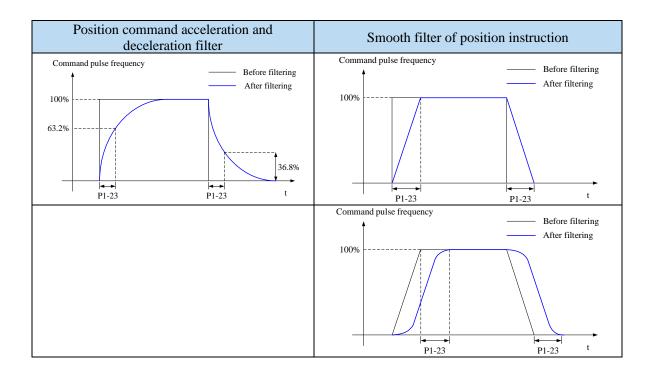

Related parameter

Parameter	Signal	Default setting	Suitable mode	Meaning	Modify	Effective
P5-51	/V-RDY	n.0000	3, 4, 7	Speed reach signal	Anytime	At once

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-05	Reach speed	50	rpm	0~10000	Anytime	At once

Speed arrival signal output condition

When the actual motor speed is greater than P5-05, output speed reach signal (/V-RDY).

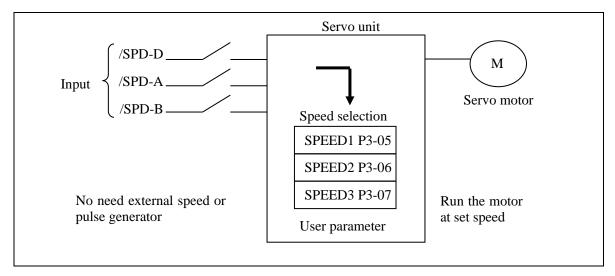


5.4.1.4 Speed command filter

Related parameter

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P1-22	Speed command filter selection	0	-	0~1	Servo bb	At once
P1-23	Speed command filter time	0	0.1ms	0~65535	Servo bb	At once

P1-22	Contents
0	First-order Inertial Filter
1	Smooth filter



5.4.2 Speed control (internal speed)

Parameter	Overview	Chapter
P0-01 Control mode selection	Set to 3: internal speed control mode	5.4.2.1
P3-05 Internal speed 1	Speed value setting of internal 3-segment speed	5.4.2.1
P3-06 Internal speed 2	in rpm	
P3-07 Internal speed 3		
P5-28 internal speed selection /SPD-A	The combination of terminals determines the	5.4.2.1
P5-29 internal speed selection /SPD-B	speed of corresponding section	
P5-27 internal speed direction selection	Direction changing, default is n.0000	5.4.2.1
/SPD-D	If the direction changing is given through SI2	
	terminal, P5-27 can be set to n.0002	
P3-09 soft start acceleration time	Set acceleration and deceleration time in ms	5.4.1.1
P3-10 soft start deceleration time		

5.4.2.1 Internal speed mode

Parameter	Set	Meaning	Modify	Effective		
	value					
P0-01	3	Speed control: internal speed selection	Servo bb	At once		
Function: internal speed selection will set 3 motor speeds and select the speed by external signal. It is						
no need to configure external speed generator or pulse generator.						

Related parameter

Parameter	Meaning	Defaulted setting	Unit	Range	Modify	Effective
P3-05	Internal speed 1	0	rpm	-9999~+9999	Anytime	At once
P3-06	Internal speed 2	0	rpm	-9999~+9999	Anytime	At once
P3-07	Internal speed 3	0	rpm	-9999~+9999	Anytime	At once

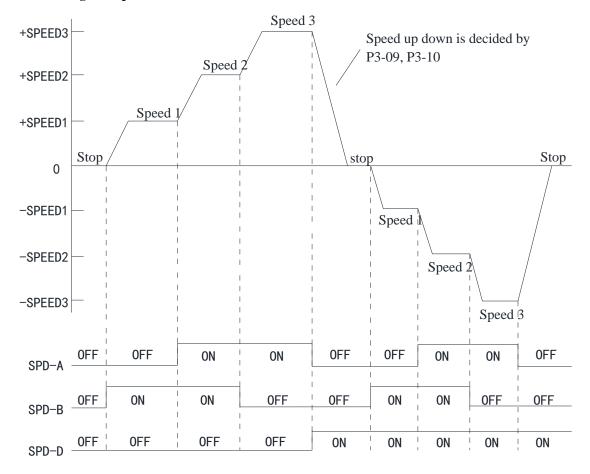
Parameter	Signal	Default setting	Range	Modify	Effective
P5-27	Internal direction /SPD-D	n.0000	Range: 0000-0014. Distribute to input terminal through P5-27.		
P5-28	Internal speed /SPD-A	n.0000	Range: 0000-0014. Distribute to input terminal through P5-28.	Anytime	At once
P5-29	Internal speed /SPD-B	n.0000	Range: 0000-0014. Distribute to input terminal through P5-29.		

1. Correlation between running speed and terminal signal

	Input signal	specu and terminar	Dunning speed	
SPD-D (P5-27)	PD-D (P5-27) SPD-A (P5-28) SPD-B (P5-29)		Running speed	
	0	0	Internal speed is zero	
0. f 1	0	1	P3-05: SPEED1	
0: forward run	1	1	P3-06: SPEED2	
	1	0	P3-07: SPEED3	
	0	0	Internal speed is zero	
1	0	1	P3-05: SPEED1	
1: reverse run	1	1	P3-06: SPEED2	
	1	0	P3-07: SPEED3	

Note:

- (1) /SPD-D signal is direction control, input SI terminal can be changed according to P5-27. The validity of the terminal signal determines the direction of the motor.
- (2) The combination of /SPD-A and /SPD-B input terminal effectiveness determines the multi segment speed


(3) 0/1 of the above table represent the validity of the signal. The 0-bit terminal input is invalid. 1 is the terminal input valid.

2. Terminal effectiveness description

The following table takes /SPD-D as an example, /SPD-A, /SPD-B signals are the same.

Parameter setting	Signal/SPD-D terminal input status	Signal/SPD-D terminal logic
P5-27=n.0000	No need external terminal input	
P5-27=n.000□	SI□ terminal no signal input	Invalid
P5-27=n.001□	SI□ terminal has signal input	
P5-27=n.0010	No need external terminal input	
P5-27=n.000□	SI□ terminal has signal input	Valid
P5-27=n.001□	SI□ terminal no signal input	

3. Running example

5.4.3 Speed control (pulse frequency command)

Parameter	Overview	Reference chapter
P0-01 Control mode selection	Set to 7: external pulse speed mode	5.4.3.1
P0-10 Pulse command form	Set pulse form 0-CW/CCW	5.3.2.2
	1-AB 2-P+D	
P0-15 Command pulse frequency at rated speed	Determine the linear relationship between the command pulse frequency and the speed	5.4.3.3
P0-16 Speed command pulse filter time	When the command pulse frequency is relatively low, setting this parameter properly can reduce the speed fluctuation	5.4.3.4
P5-71 Function selection of direction terminal in pulse speed mode	change the pulse direction	5.4.3.5

5.4.3.1 External pulse speed mode

Parameter	Setting value	Meaning	Modify	Effective
P0-01	7	Speed control: pulse frequency speed command	Servo bb	At once

Function: speed command is decided by external pulse frequency, but not related to pulse quantity. The wiring is the same as position command. Select CW, CCW mode or direction + pulse mode, AB phase pulse mode.

5.4.3.2 Pulse frequency command

Pulse frequency command is the same as external pulse command position control, refer to chapter 5-3-2.

5.4.3.3 Command pulse frequency at rated speed

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-15	command pulse frequency at rated speed	1000	100Hz	0~10000	Servo bb	At once

Note: the unit is 100Hz.

Example: P0-15=300, command pulse frequency at rated speed=30kHz;

P0-15=1000, command pulse frequency at rated speed= 100kHz.

5.4.3.4 Speed command pulse filter time

Parame ter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-16	speed command pulse filter time	100	0.01ms	0~10000	Servo bb	At once

When the command pulse frequency is low, setting a suitable value for this parameter can decrease the speed fluctuation.

5.4.3.5 Speed command pulse direction

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-71	Function selection of direction terminal in pulse	0	-	0~1	Servo bb	At once

spe	ed mode			

5.5 Torque control

Parameter	Overview	Reference chapter
P0-01 Control mode selection	Set to 1: internal torque mode	5.5.2.1
P3-33 Internal torque command	The given value is the percentage of rated torque	5.5.2.2
P3-16 Internal forward speed limit of torque control P3-17 Internal reverse speed limit of torque control P3-14 Forward max speed limit (MAX speed) P3-15 Reverse max speed limit (MAX speed)	Speed limit in torque mode	5.5.1.1
P5-27 Speed direction switch /SPD-D	Change the direction, default is n.0000 If it is given through SI2 terminal, P5-27 can be set to n.0002	

5.5.1 Torque control (internal setting)

Parameter	Set value	Function	Modify	Effective			
P0-01	1	Torque control: internal setting	Servo bb	At once			
Function: Control the torque by internal torque command.							

5.5.1.1 Internal torque command

Parame ter	Meaning	Default setting	Unit	Range	Modify	Effe ctive
P3-33	Internal torque	0	1% rated	-1000~+1000	Anyti	At
	command	U	torque	-1000 +1000	me	once

The unit of this parameter is 1% of the rated torque.

For example: P3-33=50, motor forward run with 50% of the rated torque;

P3-33= -20, motor reverse run with 20% of the rated torque.

In addition to using the torque to control the direction of servo operation, it can also use / SPD-D to control the direction.

5.5.1.2 Internal speed limit of torque control

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P3-16	internal forward speed limit in torque control mode	Motor rated	rpm	5~65535	Anytime	At once
P3-17	internal reverse speed limit in torque control mode	Motor rated	rpm	5~65535	Anytime	At once

Note: Even if the setting speed of this parameter is greater than the speed limit of P3-14, the actual effective speed limit is the lower speed limit. (The maximum speed is the smaller value in P3-14/P3-15 and P3-16/P3-17)

5.5.1.3 Speed reach signal output (/VLT)

In torque mode, when the absolute value of the actual speed of the servo motor exceeds the speed limit value, it is considered that the actual speed of the servo motor is limited. At this time, the

servo driver can output /VLT signal. Otherwise, if any condition is not met, the speed limit signal is invalid.

Parameter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-43	/VLT	n.0000	1, 2	Speed limit detection	Anytime	At once

By default, no terminal is allocated, the parameter range is 0000-0014, and is allocated to the output interface through parameter P5-43. When set to 0002, the signal is output from the SO2 terminal. /VLT signal is only valid in torque mode.

5.6 Absolute value system

5.6.1 Absolute system setting

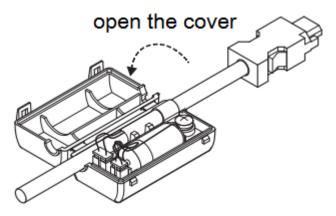
In order to save the position data of absolute encoder, the battery unit needs to be installed. Install the battery on the battery unit of the encoder cable with the battery unit.

If you do not use encoder cable with battery unit, please set P-79 to 1, that is, multi-loop absolute value encoder is used as incremental encoder.

Pararmeter	Name	setting	Meaning	Range
	Absolute	0	Normally use absolute encoder and use battery to memorize position.	
P0-79	P0-79 encoder battery undervolta ge alarm switch 2	1(default)	Use multi-loop absolute encoder as incremental encoder and no longer remember position	0~2
		Use as absolute encoder, ignore the multi-loop overflow alarm		

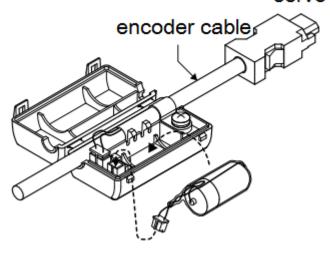
5.6.2 Replace the battery

When replacing the battery, please replace the battery while keeping the driver and motor connected well and the control power is connected. If the battery is replaced when the control power between the driver and the motor is closed, the data stored in the encoder will be lost.

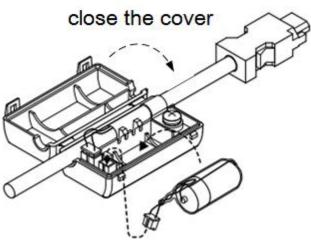

Note: Absolute Encoder Battery Model (This Battery Can't Charge)

Battery unit for normal cable: CP-B-BATT Battery unit for tank chain cable: CPT-B-BATT

Battery replacement steps

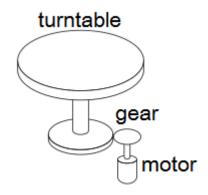

When using encoder cable with battery unit

- (1) Only the control power of the servo unit is connected;
- (2) Open the cover of the battery cell;


(3) Take out the old battery, install the new one.

servo driver side

(4) Close the cover of the battery unit



- (5) After replacing the battery, in order to remove the "Encoder Battery Alarm (E-222)" display, please do clear alarm twice (F0-00=1).
 - (6) Connect the power supply of the servo unit again;
 - (7) Make sure the error display disappears and the servo unit can operate normally.

5.6.3 The upper limit of turns

The upper limit of rotating cycles can be used for position control of gyroscopes such as turntables.

For example, suppose there is a machine whose turntable moves only in one direction, as shown in the figure below.

Because it can only rotate in one direction, after a certain period of time, the number of revolving

cycles will always exceed the upper limit of absolute value encoder.

Servo motor	Resolution	Rotating Circle			
	(single-circle	Serial Data	Operation of overtime		
series	data)	Output range			
			When it is higher than the upper limit value		
			in the forward direction (+32767*2^ 17):		
CM/T	17		Rotation serial data = $32767*2^17$		
CIVI/ I	17		When it is below the lower limit of reversal		
			direction (-32768*2^ 17):		
		-32768~32767	Rotation Serial Data=-32767*2^17		
		-32706~32707	When it is higher than the upper limit value		
			in the forward direction (+32767*2^23):		
TI	23		Rotation serial data = $32767*2^2$		
TL	23		When it is below the lower limit of reversal		
			direction (-32768*2^ 23):		
			Rotation Serial Data=-32767*2^23		

5.6.4 Read absolute position by communication

	Basic parameter						
User	Name	Function					
parameter							
U0-10		Absolute single turn position, read the single word of the					
U0-11	Encoder feedback value	hex address 0x100A and 0x100B through Modbus-RTU, U0-10+U0-11*10000 is current encoder single turn position					
U0-91	Multi-turn absolute encoder present turns	read the single word of the hex address 0x105B through Modbus-RTU, it is current encoder turns					
U0-57	Absolute encoder present	read the double words of the hex address 0x1039					
U0-58	Absolute encoder present position feedback low 32-bit	through Modbus-RTU, it is current encoder position, with \pm pulses					
U0-59	Absolute encoder present	Read the double words of the hex address 0x103B					
U0-60	Absolute encoder present position feedback high 32-bit	through Modbus-RTU, it is current encoder position high bits, needs to plus the low bits data					

The servo driver transmits the position data information of the encoder through RS485 interface and ModbusRTU protocol.

■ 17-bit absolute encoder, the pulses per turn is 131072. Read U0-60 (0x103C).

① 0 is encoder zero position positive direction. The encoder current position is $U0-57*1+U0-58*2^{16}+U0-59*2^{32}+U0-60*2^{48}$.

② -1 is encoder zero position negative direction. The current encoder value is

(U0-57-65535) *1+ (U0-58-65535) *2¹⁶+ (U0-59-65535) *2³²+U0-60*2⁴⁸.

■ 23-bit absolute encoder, the pulses per turn is 8388608.

Read U0-60 (0x103C).

- ① 0 is encoder zero position positive direction. The current encoder value: $U0-57*1+U0-58*2^{16}+U0-59*2^{32}+U0-60*2^{48}$.
- 2 -1 is encoder zero position negative direction. The current encoder value:

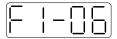
 $[(65536 - U0-57)*1 + (65535-U0-58)*2^{16} + (65535 - U0-59)*2^{32} + (65535-U0-60)*2^{48}]*(-1).$

Description of communication parameters:

Default communication parameter of RS485 port: baud rate 19200bps, 8 data bits, 1 stop bit, even parity, Modbus station number 1.

Note: refer to Appendix 1 (P7-XX) for the description of communication parameters.

5.6.5 Clear multi-turn


The encoder clearing turns needs to be completed in the servo BB state. The encoder turns can be cleared through the servo panel and ModbusRTU communication. When F1-06 writes 1, the current turns of multi-turn absolute value U0-91 will be set to zero, and the current position feedback U0-57 \sim U0-59 of absolute value encoder will also change.

9. Servo panel clearing

Enter parameter F1-06 in servo bb status:

Press [INC] add to 1, keep press [ENT] to confirm and exit:

The absolute encoder position turns can be cleared through F1-06.

10.ModbusRTU clearing

Write 1 in hex address 0x2106 through Modbus-RTU can clear the turns.

It will take effective when servo is in bb status. Please write 0 to 0x2106 after clearing.

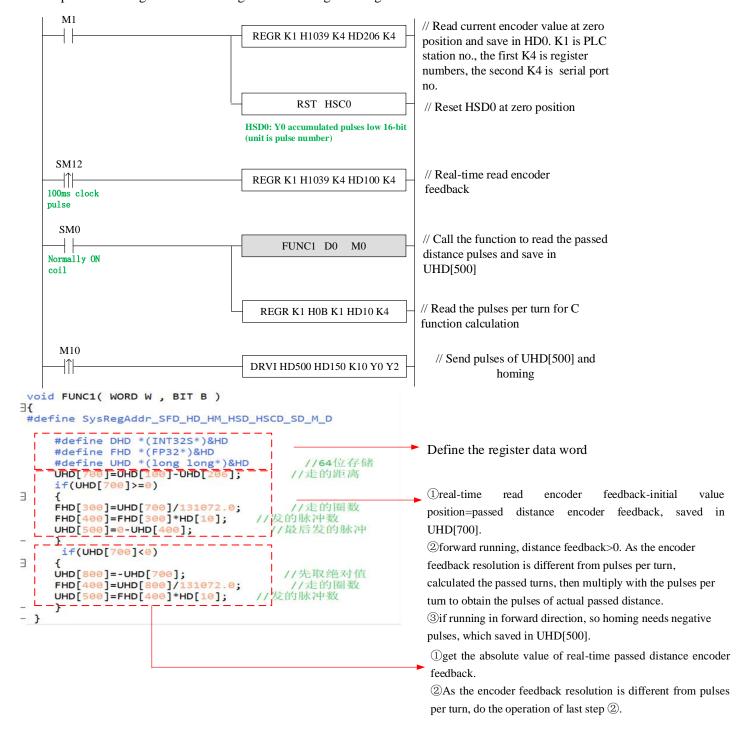
5.6.6 Zero calibration of absolute encoder

User	Name			
parameter				
	1: absolute encoder position clearing			
F1-06	3: absolute encoder zero point			
	calibration			
U0-94				
U0-95	Relative encoder feedback value which			
U0-96	can be cleared			
U0-97				

1	Servo	nanel	cal	lihra	tion
1.	SCIVU	Danci	Cai	101a	เนบม

Enter the parameter F1-06 in servo bb status:

Press 【INC】 add to 3, keep press 【ENT】 to exit:


Calibrate the encoder current position to zero point thorugh F1-06. U0-94~97 will show the encoder position after calibration.

2. ModbusRTU calibration

Write 3 to the parameter F1-06 (modbus address 0X2106), U0-94~97 will show the motor absolute position after calibration.

5.6.7 Homing application

Read the multi-turn absolute position through Xinje PLC, it can be read in four words. The following example is homing through multi-turn absolute encoder feedback. M1 is ON, memory the origin position. SM12 is ON, memory the real-time position. Read the encoder feedback of the passed position through function calling. Return to origin through DRVI instruction.

5.7 Auxiliary functions

5.7.1 Anti-blocking protection

Anti-blocking alarm: When the motor speed is lower than P0-75 (unit 1 rpm) and the duration reaches the set value of P0-74 (unit ms), the current output torque U0-02 is greater than the internal positive torque limit of P3-38 and the internal reverse torque limit of P3-39, it will show the alarm E-165 blocking overtime.

■ Related parameters

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P0-74	Blocking alarm time	According to models	1ms	0~65535	Anytime	At once
P0-75	Blocking alarm speed	50	rpm	5~9999	Anytime	At once
P3-38	Anti-blocking alarm internal forward torque limit	300	%	0~300	Anytime	At once
P3-39	Anti-blocking alarm internal reverse torque limit	300	%	0~300	Anytime	At once

Note

- (1) When P0-74 or P0-75 is set to 0, this alarm will not be detected;
- (2) If this alarm occurs during normal operation of servo, please confirm:
- (a) Monitor U0-02 motor torque and check if P3-38 and P3-39 torque limits are set properly;
- (b) Check the external mechanical structure and installation;
- (3) P0-74 the default value of locked rotor alarm time is as follows:

Driver model	P0-74 (/ms) default parameter
DS5□-20P1-PTA	2000
DS5□-20P2-PTA	3000
DS5□-20P4-PTA	3000
DS5□-20P7-PTA	5000

5.7.2 Torque limit

1. Internal torque limit

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P3-28	Internal Forward torque limit	300	%	0~300	Anytime	At once
P3-29	Internal reverse torque limit	300	%	0~300	Anytime	At once

- 1. if this parameter value is less than external torque limit value, the final limit value is this parameter.
- 2. The unit is percent of the motor rated torque; the default value is 300%. The real max output torque is limited by motor overload times.

2. External torque limit (via input signal)

Parame ter	Meaning	Default setting	Unit	Range	Modify	Effective	
P3-30	Forward external torque limit	300	%	0~300	Anytime	At once	
P3-31	Reverse external torque limit	300	%	0~300	Anytime	At once	
The unit is the percent of motor rated torque; the default value is 300%.							

Parame	Signal	Default	Meaning	Range	Modif	Effecti
ter	name	setting			У	ve
P5-25	/P-CL	n.0000	The necessary condition to use forward external torque limit	Range 0000-0014, can be distributed to other input terminals through P5-25.	Anyti me	At once
P5-26	/N-CL	n.0000	The necessary condition to use reverse external torque limit	Range 0000-0014, can be distributed to other input terminals through P5-26.	Anyti me	At once

3. Relationship

The following are the relationship of internal torque limit, external torque limit, P-CL, /N-CL.

P-CL/N-CL status	Final forward torque	Final reverse torque
0	Decided by P3-28	Decided by P3-29
1		The smaller one of internal reverse torque limit and external reverse torque limit

4. Output torque up to limit value signal

Parame ter	Signal name	Default setting	Suitable mode	Meaning	Modify	Effective
P5-42	Torque limit /CLT	n.0000	All	Output signal when motor output torque up to P3-28, P3-29.	Anytime	At once

No terminals are assigned by default. The parameter range is 0000-0014, which is assigned to the output interface through parameter P5-42. When set to 0002, the signal is output from the SO2 terminal.

5.7.3 Speed limit

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective	
P3-14	Forward max speed command limit	4000	rpm	0~65535	Servo bb	At once	
P3-15	Reverse max speed command limit 4000 rpm $0\sim65535$		Servo bb	At once			
Note: P3-14 and P3-15 are effective in all the modes.							

5.7.4 I/O signal distribution

5.7.4.1 Input terminal distribution

1. Input signal distribution

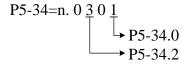
Parameter	Parameter Meaning	Set value	Meaning
P5-20~P5-36	n. 0	n.0000	Not distribute to terminal input
		n.000x	Input always open signal from SIx
		n.0010	Set the signal to be always valid
		n.001x	Input always close signal from SIx

Note: The basic filtering time refers to input terminal filtering time.

2. default setting of input terminal

Input terminal	SI1	SI2	SI3	SI4
signal	/S-ON	/ALM-RST	/P-OT	/N-OT

3. Filtering time of input terminal


Related parameter

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-18	SI filtering time multiple	1	-	0~10000	Anytime	At once

SI input filtering time is determined by IO parameter value and P5-18. Examples are as follows:

Pulse deviation clear set to SI1 terminal, and 30ms Filtering Time

The parameters are set as follows:

P5-34.0=1 input terminal is SI1

P5-34.2=3 basic filtering time is 3ms

P5-18=10 filtering time multiple is 10

So the total filtering time is P5-34.2 * P5-18=3ms*10=30ms

5.7.4.2 Output terminal distribution

1. Output signal distribution

Parameter	Parameter Meaning	Set value	Meaning	
P5-37~P5-53	n. 0 🗆 🗆 🗎	n.0000	Not distribute to terminal input	
	terminal no. 0: NO signal 1: NC signal No meaning No meaning	n.000x	Output always open signal from SOx	
		n.0010	Set the signal to be always valid	
		n.001x	output always close signal from SOx	

2. Default setting of output terminal

8			
Output terminal	SO1	SO2	SO3
Signal	/COIN	/ALM	/S-RDY

5.7.5 Output terminal function

5.7.5.1 Servo ready output (/S-RDY)

Related parameter

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-70	/S-RDY: output condition selection	1	-	0~1	Anytime	At once

Daramatar	Signal	Default	Suitable	Magning	Modify	Effective
Parameter	name	setting	mode	Meaning	Modify	Effective

P5-41 /S-RDY n.0003 All servo ready output Anytime At once	P5-41
--	-------

Refer to section 3.2.2 for hardware wiring details.

P5-41 parameter setting range is n.0000-0014, which is assigned to other output terminals through parameters.

If it is necessary to output signal from SO2, P5-41 can be set to n.0002/0012.

Servo ready signal output conditions

When P5-70 is set to 0: after the driver initialization is completed and the servo has no alarm status /S-RDY is valid;

When P5-70 is set to 1: after enabling, the servo has no alarm status /S-RDY is valid.

5.7.5.2 Rotating detection output (/TGON)

1. Signal setting

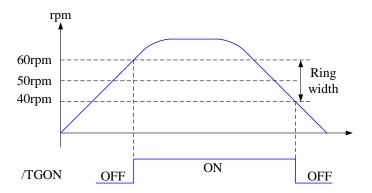
Parameter	Signal	Default setting	Suitable mode	Meaning	Modify	effective
P5-40	/TGON	n.0000	All	Rotating detection output	Anytime	At once

It is the output signal indicating that the servo motor is rotating at a speed higher than the set value.

- 1. No terminal output signal is assigned by default. The parameter range is 0000-0014, which is allocated to other output terminals through parameter P5-40.
- 2. When the speed of the servo motor is higher than the set value of P5-03, the signal that the servo is rotating is considered.

2. Related parameters

Parameter	Meaning	Default value	Unit	Range	Modify	Effective
P5-03	Rotating detection speed /TGON	50	rpm	0~10000	Anytime	At once


If the speed of the servo motor exceeds the set value of P5-03, it is judged that the servo motor is rotating and the output of the rotation detection (/TGON) signal.

Note: Rotation detection has a hysteresis of 10 rpm.

3. Hysteresis

Hysteresis is set up to prevent the system from repeatedly acting and oscillating when the parameters fluctuate up and down in a certain value. Once the hysteresis value is set, there will be a fixed ring width. Then only when the parameter must be greater than a certain value can the action be taken. When the parameter is smaller than another value, the action will be released. The ring width determines the interval time of the action. The action of small ring width is sensitive and frequent, and the action of large ring width is slow.

It should be noted that the rotation detection speed (P5-03), the same speed detection speed (P5-04), the arrival detection speed (P5-05), all contain 10 rpm hysteresis. For example, the rotation detection speed P5-03 is set to 50, and the rotation detection/TGON output port is SO3.

5.7.5.3 Same speed detection (/V-CMP)

Parameter	Signal	Default setting	Suitable mode	Meaning	Modify	Effective
P5-39	/V-CMP	n.0000	3, 4, 7	Same speed detection	Anytime	At once

Defaulted is not distribute to the terminals. Range: 0000-0014. Distribute to output terminal through P5-39. When it set to 0002, it means output from SO2.

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-04	Same speed detection signal width	50	rpm	0~10000	Anytime	At once

There is default 10rpm hysteresis loop, please refer to chapter 5-12-3 for hysteresis loop.

5.7.5.4 Warn output (/WARN)

Set the alarm output threshold, when the current speed is higher than the warning speed, output / WARN.

Parameter	Meaning	Default value	Unit	Range	Modify	Effective
P3-19	Forward warning speed	Motor related	rpm	0~65535	Servo bb	At once
P3-20	Reverse warning speed	Motor related	rpm	0~65535	Servo bb	At once

Parameter	Signal	Default setting	Suitable mode	Meaning	Modify	effective
P5-45	/WARN	n.0000	All	Warning output	Anytime	At once

^{1.} No terminal output signal is assigned by default. The parameter range is 0000-0014, which is allocated to other output terminals through parameter P5-45.

5.7.5.5 Alarm output (/ALM)

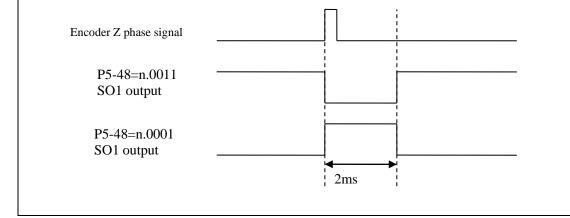
1. Servo alarm output /ALM

11.501	o ararrir out	P 47 7 1 1 1 1 1 1 1 1		
Parameter	Signal name	Setting	Meaning	Range
P5-47	Alarm output /ALM	n.0002 (default)	When the servo alarm, SO2 and COM are connected, and the alarm signal is output.	1

^{2.} When a warning occurs, the servo unit only outputs the warning and will not be forced to set OFF.

	n.0012	M/han the carve alarm the VIII	parameter P5-47. When set to 0001, the signal is output from the SO1 terminal.
--	--------	--------------------------------	--

Note:


- (1) When an alarm occurs, the servo unit is forced to set OFF, and the motor will move with external forces (including gravity). If you need to keep the motor in position, please select the motor with power loss brake (also known as brake) and use / BK signal. Refer to Section 5.2.5.
- (2) The output of the functional parameters can not be repeated.

5.7.5.6 Encoder Z phase output (/Z)

parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P5-48	Z phase output /Z	n.0000	-	0000~0014	Anytime	At once
P5-19	Z phase pulse width	2	ms	2~20	Anytime	At once

- 1. /Z signal can be distributed to the output terminal through P5-48.
- 2. Z phase signal is single pulse output mode, the default pusle width is 2ms, it can set through P5-19, it is not related to the motor speed.

Note: multi-turn motor has no Z phase output.

5.7.5.7 User-defined output signal

User can define 2 outputs. The defined method is SOx output when A>B or A<B. A is 9 activating conditions; B is user-defined comparison value.

User-defined output 1:

	defined output 1.								
	The trigger	condition o	f user-de	fine	d output	1			
	Default	Trigger co	ondition		Unit		Suitable mode	Change	effective
	trigger	setting							
P5-10	condition								
10 10		See belov	below table:		lated	to	All the modes	Anytime	At once
	0	optional	trigger	trig	gger				
	Ü	condi	001		ndition				
		Condi							
	The compar	rison value	for the tri	ggeı	conditi	on c	of user-defined output	1	
P5-11	Un	it	Default setting		Range		Suitable mode	Change	Effective
	Related to condi	00			-3276 3276		All the modes	Anytime	At once
P5-12	When P5-10≥P5-11 or P5-10 <p5-11, output<="" sox="" td=""></p5-11,>								

	Setting value	Function			Default value	Suitable mode	Change	Effective
	0	P5-10≥P5-1	1, SOx output	t				
	1	P5-10 <p5-< td=""><td>11, SOx outpu</td><td>ıt</td><td></td><td></td><td></td><td></td></p5-<>	11, SOx outpu	ıt				
	2	P5-10 absol	ute value ≥P.	5-11, SOx	0	All the	Anytime	At once
		output			O	modes	Anythie	7 tt once
	3	P5-10 absol	ute value ≤P.	5-11, SOx				
		output						
	User-defi	ined output 1 l	nysteresis loo	p				
P5-13	Unit		Default setting	Range	Suitable mode		Change	Effective
		l to trigger ndition	0	0~65535	All the modes		Anytime	At once
	Output te	rminal setting	of user-defin	ed output 1				
	Signal na	me	Default	Meaning	Change	Change		
			setting					
				Default	_		distribute to	the output
P5-52				setting is	terminal	through P5	-52.	
	User-defined output		0000	not				
			n.0000	distribut				
				e to the				
				output terminal				
				wiiiiiai				

User-defined output 2:

USCI	-defined out			1	2				1	
		con	dition of user-defi	ned or	itput 2					
	Default		Trigger							
	trigger		condition	Unit		Suitable mode		Change	Effective	
P5-14	condition		setting							
13 14	0		See below table: optional trigger condition	Relat trigge cond	er ition		I the modes	Anytime	ime At once	
	The compa	riso	n value for the trig	ger co	ndition of	use	r-defined outp	out 2		
	Unit		Default setting	Rang	e	Sui	itable mode	Change	Effective	
P5-15	Related to)								
	trigger		0	-999	9~9999	A	ll the modes	Anytime	At once	
	condition	ì						J		
			25-15 or P5-14 <p5< td=""><td>-15, S</td><td>Ox output</td><td></td><td></td><td></td><td></td></p5<>	-15, S	Ox output					
	Setting	_	··		Default	Suitable mode		CI	Ecc .:	
	value	runo	ction		setting			Change	Effective	
	0 1	P5-1	.4≥P5-15, SOx out	tput						
P5-16	1 1	P5-1	4 <p5-15, or<="" sox="" td=""><td>utput</td><td colspan="2" rowspan="3">-</td><td></td><td></td><td></td></p5-15,>	utput	-					
	<u> </u>	P5-1	4 absolute	value			All the modes	Anytime	.	
	2	≥P5-	-15, SOx output						At once	
	1		4 absolute value	e <						
	3		5, SOx output							
			utput 2 hysteresis	loop			1			
	Unit		Default setting	Rang	e	Sui	itable mode	Change	Effective	
P5-17	Related to)								
	trigger		0		2768~	A	ll the modes	Anytime	At once	
	condition	1	-	3.	2767			J		
	Output tern	nina	l setting of user-de	efined	output 2	1				
	Signal nam		Default setting	Mear		Ch	ange			
D5 52				Defa						
P5-53	User-defin	ed	0000		g is not	Ra	nge 0000-00	14, distrib	ute to the	
	output 2		n.0000	distri			tput terminal t			
	т			the	output			<i>U</i> - 0		
					1					

	terminal	
	terminar	

Note: please refer to chapter 5-7-5-2 for hysteresis loop.

Optional trigger conditions:

Condition no.	Meaning	Unit		
0	-	-		
203	Current command	Rated current %		
205	Current feedback	Rated current %		
301	Speed command	rpm		
302	Speed feedback	rpm		
308	Speed deviation	rpm		
4402	Position command	1 command		
4404	Position feedback	1 command		
1406	Position deviation	1 command		
502	Bus voltage	V		
503	Drive internal temperature	°C		
506	Average output power	W		
508	Average thermal power	W		

5.7.5.8 Other SO terminal function

Terminal name	Description	Chapter
/COIN-HD	Positioning completion hold	<u>5.3.1.2</u>
/COIN	Positioning end	<u>5.3.1.2</u>
/CLT	Torque limit detection	<u>5.8.2</u>
/VLT	Speed limit detection	<u>5.5.1.3</u>
/MRUN	Internal position mode motion start	<u>5.3.2.7</u>
/V-RDY	Speed arriving signal	<u>5.4.1.3</u>
/PREFA	Internal position selection signal	5.3.2.1
/PREFB	Internal position selection signal	<u>5.3.2.1</u>
/PREFC	Internal position selection signal	<u>5.3.2.1</u>
/PREFD	Internal position selection signal	<u>5.3.2.1</u>

5.7.6 Input terminal function

5.7.6.1 Proportion action command (/P-CON)

Parameter	Signal	Type	Default	State	Meaning	Modify	Effective
P5-21	/D CON	Lague		Valid	Run in P control mode	Anytime	At anas
	/P-CON Input	n.0000	Invalid	Run in PI control mode	Anytime	At once	

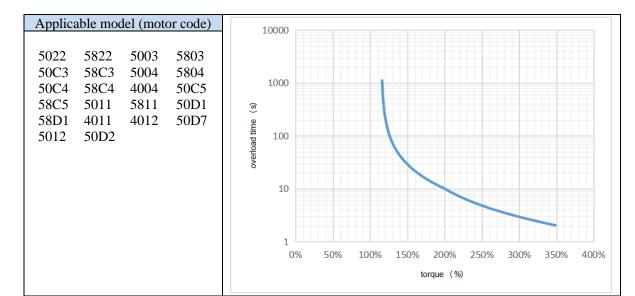
- 1. /P-CON is the speed control mode signal selected from PI (proportion integral) and P (proportion).
- 2. If set to P control mode, the motor rotate and micro-vibration caused by speed command input drift can be decreased. But the servo stiffness will decrease.
- 3. /P-CON signal can be distributed to input terminal via parameter P5-21.

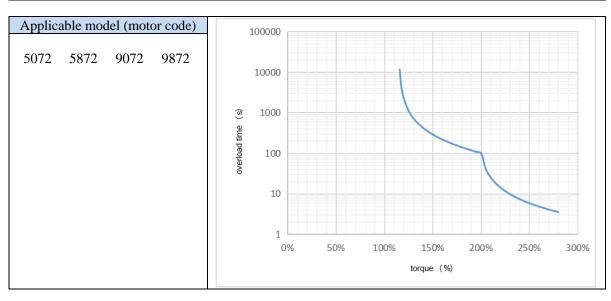
5.7.6.2 Alarm reset (/ALM-RST)

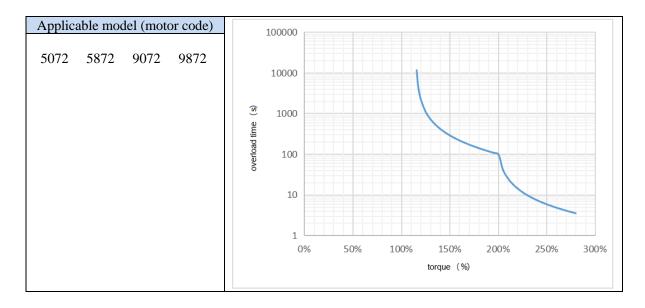
■ Alarm reset /ALM-RST

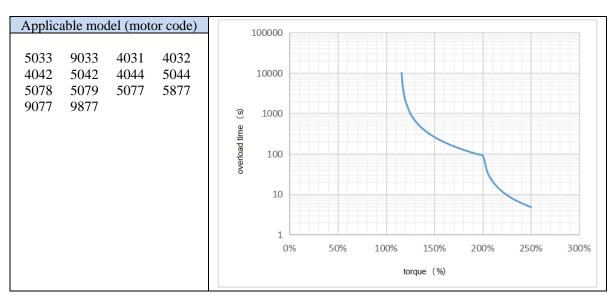
Parameter	Signal	Default setting	Suitable mode	Meaning	Modify	effective
P5-24	/ALM-RST	n.0002	All	Input normally open signal	Anytime	At once

			from SI2 terminal		
--	--	--	-------------------	--	--

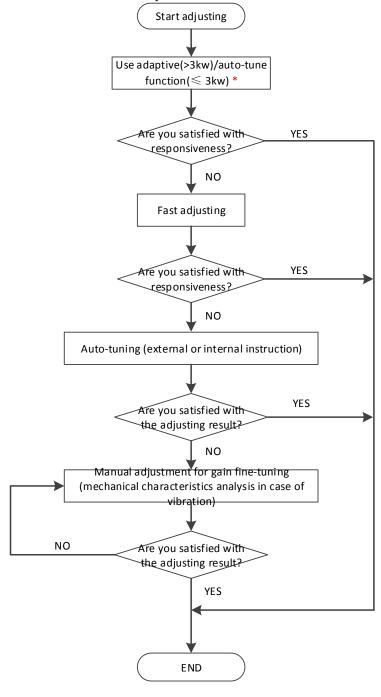

- 1. The parameter range is 0000-0015, which is allocated to other input terminals through parameter P5-24
- 2. When an alarm occurs, find out the cause of the alarm and remove it, then clear the alarm by setting the signal to be effective.
- 3. /ALM-RST signal can be assigned to other terminals through this parameter, because the alarm signal is related to the safe operation of the servo, so the /ALM-RST signal can not be set to be always valid (n.0010).


5.7.6.3 Other SI terminal function


Terminal name	Description	Chapter
/S-ON	Servo enable	<u>5.2.2</u>
/P-OT	No forward driving	<u>5.2.4</u>
/N-OT	No reverse driving	<u>5.2.4</u>
/P-CL	Forward side external torque limit	5.8.2
/N-CL	Reverse side external torque limit	<u>5.8.2</u>
/SPD-D	Internal speed direction	<u>5.4.2</u>
/SPD-A	Internal setting speed	<u>5.4.2</u>
/SPD-A	Position mode reference origin triggering	<u>5.3.1.8</u>
/SPD-B	Internal setting speed	5.4.2
/SPD-D	Position mode reference origin triggering	<u>5.3.1.8</u>
/C-SEL	Control mode selection	<u>5.1.2</u>
/ZCLAMP	Zero clamp	<u>5.4.1.2</u>
/INHIBIT	Command pulse inhibit	5.3.3.4


5.7.7 Time limit curve of overload protection

The time limit curve of overload protection is only used for the judgment of alarm output and the protection of overload operation. It is recommended to use it within the continuous operation stage of torque speed curve. For the torque speed curve, please refer to appendix 9.


6 Servo gain adjustment

6.1 Overview of servo gain adjustment

6.1.1 Overview and process

The servo driver needs to drive the motor as fast and accurately as possible to track the instructions from the upper computer or internal settings. In order to meet this requirement, the servo gain must be adjusted reasonably.

Servo gain factory value is adaptive mode, but different machines have different requirements for servo responsiveness; the following figure is the basic process of gain adjustment, please adjust according to the current machine status and operation conditions.

Note: * marked as version 3730, the version before 3730 is in adaptive mode when out of factory.

6.1.2 The difference of these adjustment modes

Adjustment modes are divided into adaptive and auto-tuning, and their control algorithms and parameters are independent. Among them, the auto-tuning mode is divided into three functions: fast adjustment, automatic adjustment and manual adjustment. The three functions are the same in essence but different in implementation. Refer to the corresponding chapters of each function.

Mode	Type	Parameters	Rigidity	Responsive ness	Related parameters
Adaptive	Automatic adaptation	P2-01.0=1	middle	150ms	P2-05 adaptive speed loop gain P2-10 adaptive speed loop integral P2-11 adaptive position loop gain P2-07 adaptive inertia ratio P2-08 adaptive speed observer gain P2-12 adaptive stable max inertia ratio
	Fast adjusting		high		P0-07 first inertia ratio P1-00 speed loop gain P1-01 speed loop integral
Auto-tuning	Automatic adjustment	P2-01.0=0	high	10ms	P1-02 position loop gain
	Manual adjusting		high	Determined by parameters	P2-35 Torque instruction filtering time constant 1 P2-49 Model loop gain

6.2 Rotary inertia presumption

6.2.1 Overview

Rotational inertia estimation is the function of automatic operation (forward and reverse) in the driver and estimate the load inertia in operation.

Rotational inertia ratio (the ratio of load inertia to motor rotor inertia) is a benchmark parameter for gain adjustment, and it must be set to the correct value as far as possible.

Parameter	Meaning	Default setting	Unit	Setting range	Modification	Effective
P0-07	First inertia ratio	200	%	0~50000	Anytime	At once

6.2.2 Notes

Occasions where inertia cannot be presumed

Mechanical systems can only operate in one direction

The occasion where inertia presumption is easy to fail

- > Excessive load moment of inertia
- The running range is narrow and the travel is less than 0.5 circles.
- ➤ The moment of inertia varies greatly during operation.
- Mechanical rigidity is low and vibration occurs when inertia is presumed.

Notes of Inertia Presumption

- Since both directions are rotatable within the set range of movement, please confirm the range or direction of movement; and ensure that the load runs in a safe journey.
- ➤ If the presumed inertia under default parameters runs jitter, indicating that the present load inertia is too large, please switch to large inertia mode (P2-03.3=1) and operate again. It is also possible to set the initial inertia to about twice the current one and execute again under larger loads.
- ➤ Driver inertia ratio recognition upper limit is 200 times (parameter upper limit is 20000). If the estimated inertia ratio is exactly 20000, it means that the inertia ratio has reached the upper limit and can not be used, please replace the motor with larger rotor inertia.

Other notes

- At present, the inertia switching function is not supported, and the second inertia ratio is invalid.
- ➤ The inertia ratio upper limit changes to 500 times for the driver firmware 3700 and higher version (parameter upper limit value is 50000).

6.2.3 Operation tool

The presumptive tools of load moment of inertia are driver panel and XinjeServo software.

Operation tool	Description
Driver panel	Driver firmware needs 3761 and higher version
XinjeServo software	All versions of software supported

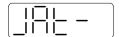
Note: driver firmware version can be checked through U2-07.

6.2.4 Operation steps

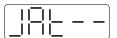
Estimate the inertia through the driver panel

1. Parameter setting

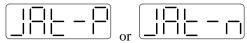
Parameter	Meaning	Default setting	Unit	Range	Modification	Effective
P2-15	Inertia configured trip	100	0.01 circle	1~3000	Anytime	At once
P2-17	Inertia identification and internal instruction auto-tuning max speed	-	rpm	0~65535	Anytime	At once
P2-18	Inertia identification initial inertia ratio	500	%	1~20000	Anytime	At once


The recommended parameters of P2-17 are 500 rpm or more. Low instruction speed will lead to inaccurate identification of inertia ratio.

2. Execute the inertia identification


Before inertia identification, please confirm the direction of servo rotation by using F1-00 jog motion function. Initial direction of servo operation is determined by INC or DEC at the beginning of inertia identification.

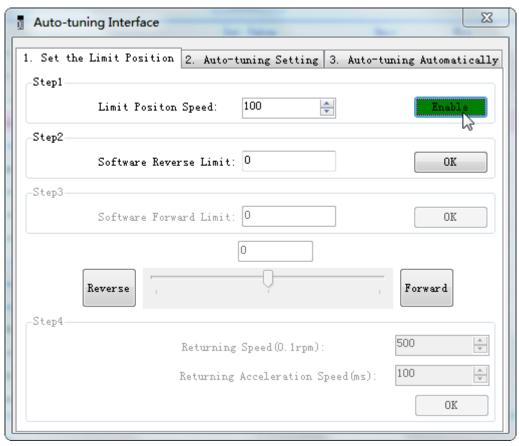
If the servo jitter is under the adaptive default parameters, please switch to the adaptive large inertia


mode (P2-03.3=1) to ensure the basic smooth operation of the servo and then identify the inertia! Servo entering parameter F0-07 in BB state:

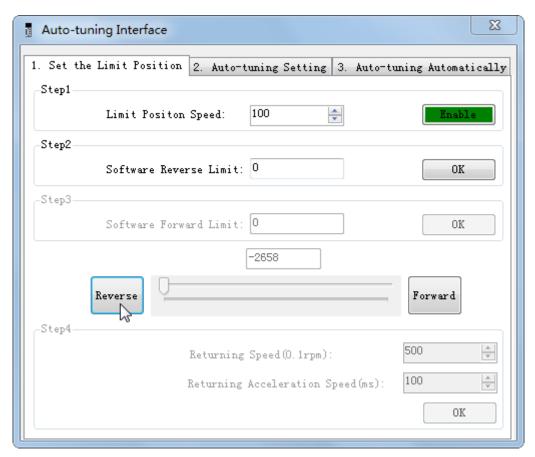
Press ENTER, servo is enabled:

Press INC or DEC to run forward or reverse (select one of them):

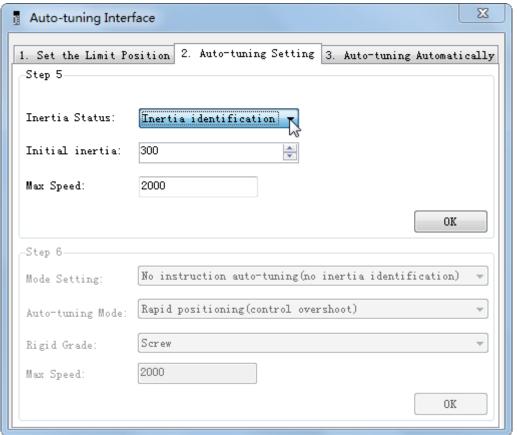
At this point, start action, under the condition of P-05=0 (initial positive direction), if press INC, then turn forward and then reverse; if press DEC, turn reverse and then forward. If the inertia identification is successful, the load inertia ratio is prompted and written to P0-07 automatically after several forward and reverse operations. If the inertia identification error occurs, the error code will be displayed. Press STA/ESC key to exit the panel inertia identification operation.


Alarm for inertia identification of panel

Error code	Meaning	Reasons and solutions	Reasons
Err-1	Motor Torque Saturation	Initial inertia too small; Maximum speed too large; Torque limit too small	
Err-2	value error is too large when calculating the inertia	① The maximum speed limit is too small (P2-17), but it is recommended not to be less than 500 rpm. Low instruction speed will lead to inaccurate identification of inertia ratio. ② The presumed inertia trip is too small. It is suggested that the minimum for P2-15 should no be less than 50 (0.5 cycles). If the trip is too small, the identification of inertia ratio will be inaccurate. ③ mechanism friction too large ④ overshoot	The maximum speed limit is too small; the travel is too small; the friction of the mechanism is too large; the overrun occurs
Err-3	Driver internal trip calculation error	1 The presumed inertia trip is too small. It is suggested that the minimum for P2-15 should no be less than 50 (0.5 cycles). If the trip is too small, the identification of inertia ratio will be inaccurate.	Contact us
Err-5	Unrestrained Vibration in the Process of Inertia Identification	Unhandled vibration occurs	Unhandled vibration occurs
Err-6	Driver is not currently in BB state	 Enable have been opened. P5-20 can be set to 0 first When the driver alarms, it will appear. Press 	Will occur when enable is turned on or driver has


		ESC key to exit the auto-tuning interface to see if there is an alarm.	alarm
Err-7	The driver alarms in the process of inertia identification	Driver has alarm, press ESC key to exit the auto-tuning interface, check the alarm code, first solve the alarm and then make inertia estimation.	Driver has alarm

Estimate the inertia through XinJeServo software


1. Click auto-tuning on the main interface of XinJeServo

2. select jog setting or manual setting to configure the inertia estimation trip

3. Set the auto-tuning interface

4. Click ok to start inertia identification.

Note:

- (1) If the auto-tuning interface is closed directly, the driver only configures inertia ratio parameters.
- (2) The detailed steps of XinJeServo's presumptive inertia refer to XinJeServo's help document.

6.3 Fast adjustment

6.3.1 Overview

Fast adjustment needs to set the moment of inertia of load first, then turn off the adaptive function. If the inertia does not match, it will cause oscillation alarm. Servo firmware version 3640 and later versions support this function, and the version is viewed through U2-07. Fast adjustment of gain parameters belongs to auto-tuning mode.

6.3.2 Fast adjustment steps

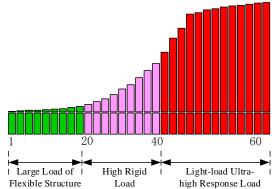
- $1.\ estimate\ the\ load\ inertia\ through\ servo\ driver\ panel\ or\ XinJeServo\ software,\ refer\ to\ chapter\ 6.2$
- 2. shut down adaptive mode, set P2-01.0 to 0
- 3. set the rigidity level P0-04

Note: P2-01.0 is the first bit of P2-01

6.3.3 Rigidity level corresponding gain parameters

■ Rigidity level

P0-04 Rigidity level	P1-00 Speed loop gain	P1-01 speed loop integral	P1-02 Position loop gain	P2-35 Torque instruction filter	P2-49 Model loop gain
1	20	31831	20	100	50
2	50	12732	50	100	80
3	70	9094	70	100	90
4	80	7957	80	100	100
5	100	6366	100	100	120
6	120	5305	120	100	150
7	140	4547	140	100	200
8	160	3978	160	100	250
9	180	3536	180	100	310


10	200	3183	200	100	350
11	220	2893	220	100	380
12	240	2652	240	100	410
13	260	2448	260	100	440
14	280	2273	280	100	470
15	300	2122	300	100	500
16	320	1989	320	100	540
17	340	1872	340	100	580
18	360	1768	360	100	620
19	380	1675	380	100	660
20	400	1591	400	100	700
21	450	1414	400	90	800
22	500	1273	450	80	950
23	550	1157	450	70	1100
24	600	1061	500	60	1300
25	650	979	550	50	1500
26	700	909	600	40	1800
27	750	848	650	30	2100
28	800	795	700	20	2400
29	850	748	750	10	2700
30	900	707	800	10	3000
31	950	670	900	10	3100
32	1000	636	900	10	3200

■ Rigidity level

P0-04 Rigidity level	P1-00 Speed loop gain	P1-01 speed loop integral	P1-02 Position loop gain	P2-35 Torque instruction filter	P2-49 Model loop gain
33	1050	606	950	10	3300
34	1100	578	1000	10	3400
35	1150	553	1050	10	3500
36	1200	530	1100	10	3600
37	1250	509	1100	10	3700
38	1300	489	1100	10	3800
39	1350	471	1200	10	3900
40	1400	454	1200	10	4000
41	1450	439	1250	10	4100
42	1500	424	1300	10	4200
43	1550	410	1350	10	4300
44	1600	397	1400	10	4400
45	1650	385	1450	10	4500
46	1700	374	1500	10	4600
47	1750	363	1750	10	4800
48	1800	353	1800	10	5000
49	1850	344	1850	10	5000
50	1900	335	1900	10	5000
51	1950	326	1950	10	5000
52	2000	318	2000	10	5000
53	2050	310	2050	10	6000
54	2100	303	2100	10	6000
55	2150	296	2150	10	6000
56	2200	289	2200	10	6000
57	2250	282	2250	10	6000
58	2300	276	2300	10	6000
59	2350	270	2350	10	6000

60	2400	265	2400	10	6000
61	2450	259	2450	10	6000
62	2500	254	2500	10	6000
63	2600	244	2600	10	6000

The rigidity level should be set according to the actual load. The larger the P-04 value, the greater the servo gain. If there is vibration in the process of increasing the rigidity level, it is not suitable to continue to increase. If vibration suppression is used to eliminate vibration, it can try to continue to increase. The following is the recommended rigidity level of the load, for reference only.

Flexible structure large load: refers to the type of synchronous belt structure, large load inertia equipment.

High rigid load: refers to the mechanism of screw rod or direct connection, and equipment with strong mechanical rigidity.

Ultra-high response load under light load: refers to equipment with very small inertia, strong mechanical stiffness and high response.

Driver power	Default parameters	Rigidity level
	P1-00=300	
	P1-01=2200	
200w∼750w	P1-02=300	15
	P2-35=100	
	P2-49=400	
	P1-00=400	
	P1-01=1650	
100w	P1-02=400	20
	P2-35=100	
	P2-49=500	

6.3.4 Notes

- ➤ The gain parameters corresponding to the rigidity level can be independently fine-tuned in the fast adjustment mode.
- In order to ensure stability, the gain of model loops is small at low rigidity level, which can be added separately when there is high response requirement.
- When vibration occurs in fast adjustment, the torque instruction filter P2-35 can be modified. If it is ineffective, the mechanical characteristic analysis can be used and the relevant notch parameters can be set (refer to chapter 6.7 vibration suppression).
- Fast adjustment mode defaults to set a rigidity level. If the gain does not meet the mechanical requirements, please gradually increase or decrease the settings.
- At present, gain switching function is not supported, that is, the second gain parameters such as P1-05, P1-06, P1-07 are invalid.

6.4 Auto-tuning

6.4.1 Overview

Auto-tuning is divided into internal instruction auto-tuning and external instruction auto-tuning.

Auto-tuning (internal instruction) refers to the function of automatic operation (forward and reverse reciprocating motion) of servo unit without instructions from the upper device and adjusting according to the mechanical characteristics in operation.

Auto-tuning (external instruction) is the function of automatically optimizing the operation according to the instructions from the upper device.

The automatic adjustments are as follows:

- > Load moment of inertia
- Gain parameters (speed loop, position loop, model loop gain)
- Filter (notch filter, torque instruction filter)

6.4.2 Notes

Untunable occasions

Mechanical systems can only operate in one direction.

Setting occasions that are prone to failure

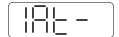
- > Excessive load moment of inertia;
- The moment of inertia varies greatly during operation.
- Low mechanical rigidity, vibration during operation and failure of detection positioning;
- ➤ The running distance is less than 0.5 circles.

Preparations before auto-tuning

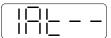
- > Use position mode;
- > Driver in BB state;
- > Driver without alarm;
- > The matching of the number of pulses per rotation and the width of positioning completion should be reasonable.

6.4.3 Operation tools

Internal instruction auto-tuning and external instruction auto-tuning can be executed by driver panel and XinJeServo software.


Auto-tuning mode	Operation tools
Internal instruction auto-tuning	XinJeServo software
external instruction auto-tuning	Driver panel

Note: please check the driver firmware version through U2-07.


6.4.4 Internal instruction auto-tuning steps

Driver panel auto-tuning steps

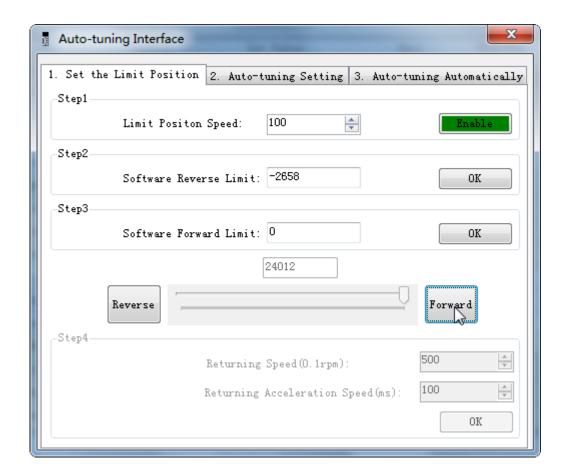
- 1. The inertia identification is carried out, and the inertia estimation steps please refer to chapter 6.2.4 operation steps.
- 2. Enter F0-09, panel display is iat-;

3.	Press	ENTER,	panel di	splay i	s iat,	servo i	s in	enabled	status	right n	ow;

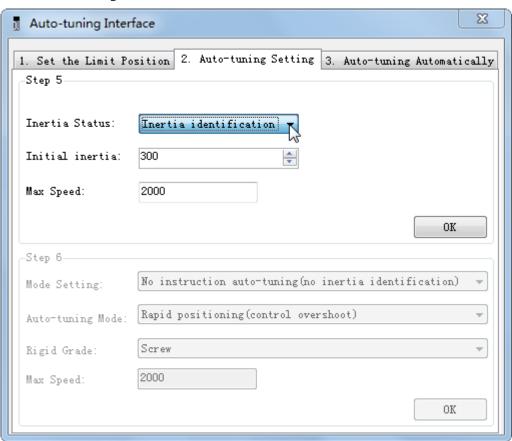
4. Press INC or DEC, panel display is tune and flashing, enter auto-tuning status;

5. Driver will automatically send pulse instructions, if the auto-tuning is successful, the panel shows done and flashing.

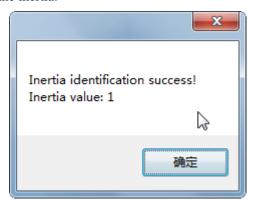
6. Press STA/ESC to exit internal instruction auto-tuning.

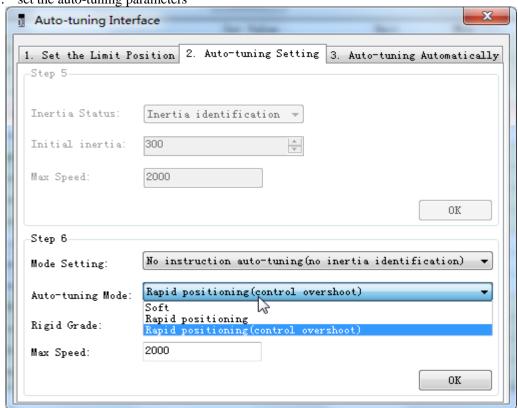

Note: In the process of auto-tuning, press STA/ESC will exit the auto-tuning operation and use the gain parameters at the exit time. If auto-tuning fails, it is necessary to initialize the driver before auto-tuning again.

■ Panel alarm in auto-tuning process


Error code	Meaning	Reasons		
		Too large inertia ratio; too weak rigidity of		
Err-1	Failure to search for optimal gain	mechanism		
		Please make sure that there is no overrun		
Err-2	Overtrip alarm in auto-tuning process	and alarm before auto-tuning.		
	Driver is not in "bb" state at the time of	Please make sure the present status of		
Err-6	operation	driver		
Err-7	Driver alarmed in auto-tuning process	The driver alarm occurs		

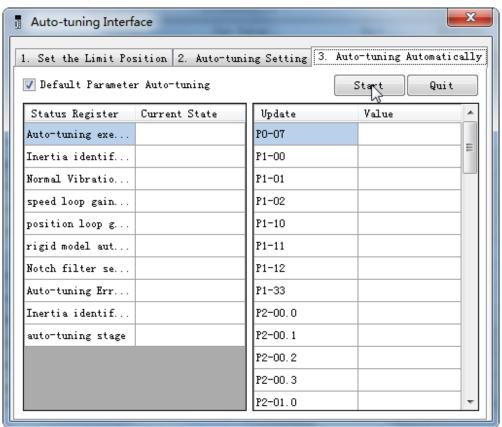
XinJeServo software auto-tuning steps


- 1. click auto-tuning on the XinJeServo software main interface
- 2. set the auto-tuning trip in jog mode or manually

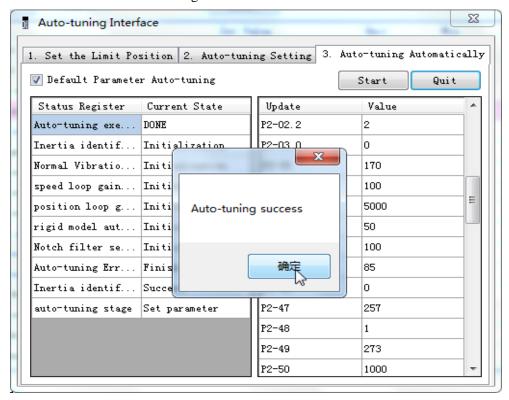

3. set the auto-tuning interface

4. click ok to estimate the inertia.

5. set the auto-tuning parameters

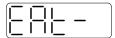


Load type	Description			
Synchronous belt	Fit for the adjustment of lower rigidity mechanism such as synchronous			
Synchronous ben	belt mechanism.			
	It is suitable for adjustment of higher rigidity mechanism such as ball			
Screw rod	screw mechanism. If there is no corresponding mechanism, please choose			
	this type.			
Rigid connection	It is suitable for the adjustment of rigid body system and other			
Kigiu coillection	mechanisms with higher rigidity.			
Auto-tuning mode	Description			
Soft	Make a soft gain adjustment. Besides gain adjustment, notch filter is			
5011	automatically adjusted.			
	Make special adjustment for positioning purpose. Besides gain			
Fast positioning	adjustment, the model loop gain and notch filter are automatically			
	adjusted.			


Fast positioning (control overshoot)

In the use of positioning, we should pay attention to adjusting without overshoot. Besides gain adjustment, the model loop gain and notch filter are automatically adjusted.

6. Start auto-tuning


7. Wait for the end of the auto-tuning

6.4.5 External instruction auto-tuning steps

Driver panel auto-tuning steps

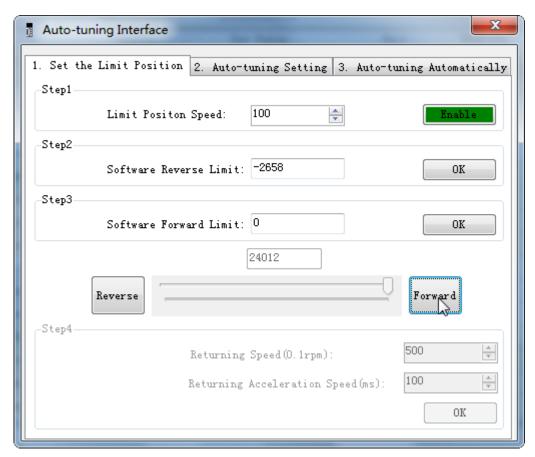
- 1. The inertia identification is carried out and the step of inertia estimation please refers to the driver panel inertia estimation (6.2.4 operation step)
- 2. Shut down adaptive function (P2-01.0 sets to 0), power on again
- 3. Enter parameter F0-08, it will show Eat- (Exteral Refrence Auto-tuning)

4. Press ENTER, if the enabler is not open, the panel displays Son and flickers, waiting for the enabler to open, if the enabler has been opened, skip this step;

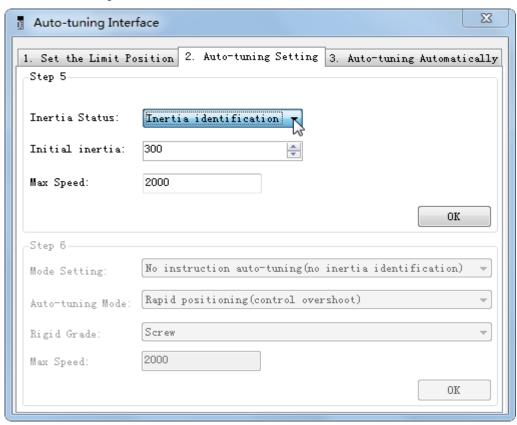
5. Turn on the servo enabler, the panel displays tune and flickers, enter auto-tuning status.

6. The upper device starts to send pulse, if the auto-tuning is successful, it displays done and flickers.

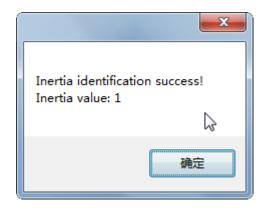
7. Press STA/ESC to exit the external instruction auto-tuning.


Note: in the auto-tuning process, press STA/ESC will exit the auto-tuning, and use the gain parameters at the exit moment.

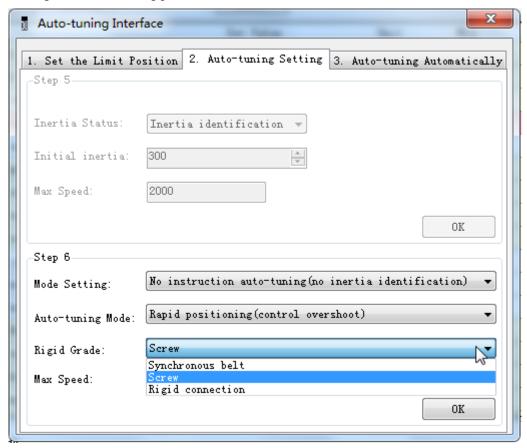
■ Panel error alarm in auto-tuning process


Error code	Meaning	Reasons		
Err-1	Failure to search for optimal gain	Too large inertia ratio; too weak rigidity of mechanism		
Err-2	1 Overrun/alarm occurs during auto-tuning 2 External instruction auto-tuning/Vibration suppression mode: servo shut down the enabler during auto-tuning	Please make sure that there is no overrun and alarm before auto-tuning. Make sure that the enable is not closed during auto-tuning		
Err-3	Current non-position control mode	Please auto-tune in position mode		
Err-4	Unclosed adaptive function	Set P2-01.0 to 0 before auto-tuning		
Err-7	Driver alarm during auto-tuning	Driver alarmed		
Err-8	Positioning completion signal instability	Short instruction interval		

XinJeServo software auto-tuning steps


1. Click auto-tuning on the main interface of XinJeServo software

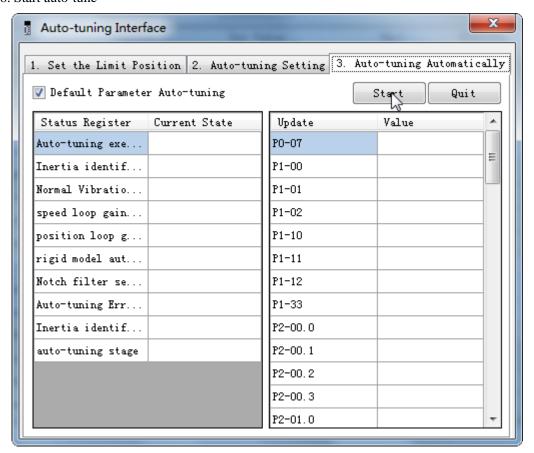
- 2. Select jog or manual setting to configure the trip of inertia identification.
- 3. Set the auto-tuning interface


4. Click ok to start the inertia identification.

5. Configure the auto-tuning parameters

Screw

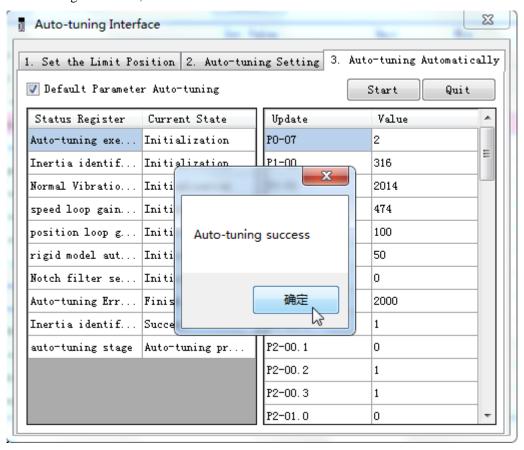
Rigid connection


Auto-tuning mode	Description
Soft	Make a soft gain adjustment. Besides gain adjustment, notch filter is
501	automatically adjusted.
Rapid positioning	Make special adjustment for positioning purpose. Besides gain adjustment,
Kapiu positioning	the model loop gain and notch filter are automatically adjusted.
Rapid positioning	In the use of positioning, we should pay attention to adjusting without
(control overshoot)	overshoot. Besides gain adjustment, the model loop gain and notch filter
(control overshoot)	are automatically adjusted.
Load type	Description
Synchronous belt	Adjustment of lower rigidity mechanism such as synchronous belt
	It is suitable for adjusting higher rigidity mechanism such as ball screw

mechanism. If there is no corresponding mechanism, please choose this


It is suitable for the adjustment of rigid body system and other mechanisms

with higher rigidity.

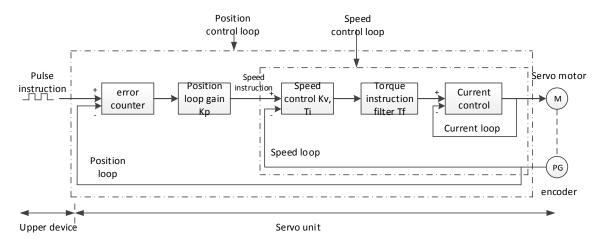

6. Start auto-tune

7. Open the servo enable, then click ok.

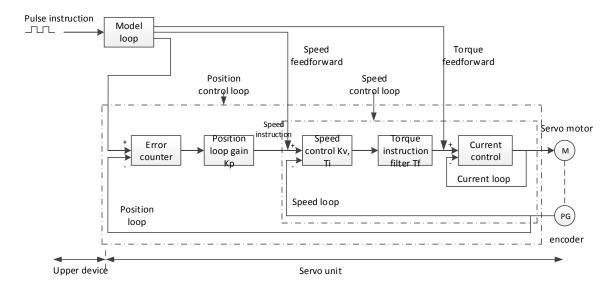
- 8. The upper device starts to send pulses, wait the completion of auto-tuning.
- 9. Auto-tuning is finished, click ok.

6.4.6 Related parameters

The following parameters may be modified during auto-tuning. Do not change them manually during auto-tuning.


Parameter	Name	Property	The influence of numerical value on gain after auto-tuning
P0-07	First inertia ratio		
P1-00	First speed loop gain		
P1-01	Integral time constant of the first speed loop		
P1-02	First position loop gain		
P2-00.0	Disturbance observer switch	Gain performance parameters	Yes
P2-01.0	Adaptive mode switch		
P2-35	Torque command filter time constant 1		
P2-41	Disturbance observer gain		
P2-47.0	model loop switch	parameters	
P2-49	model loop gain		
P2-55	model speed feedforward gain		
P2-60.0	Active vibration suppression switch		
P2-61	Active vibration suppression frequency		
P2-62	Active vibration suppression gain		
P2-63	Active vibration suppression damping		

P2-64	Active vibration suppression filter time 1		
P2-65	Active vibration suppression filter time 2		
P2-66	The second group of active vibration damping		
P2-67	Second group active vibration suppression frequency		
P2-69.0	First notch switch		
P2-69.1	Second notch switch		
P2-71	First notch frequency		
P2-72	First notch attenuation		
P2-73	First notch band width		
P2-74	Second notch frequency		
P2-75	Second notch attenuation		
P2-76	Second notch band width		
P2-17	Inertia identification and internal instruction auto-tuning max speed		
P2-86	auto-tuning jog mode	Auto-tuning	
P2-87	auto-tuning min limit position	setting	No
P2-88	auto-tuning max limit position	parameters	
P2-89	auto-tuning max speed		
P2-90	auto-tuning acceleration/deceleration time		


Note: P2-60~P2-67 are automatically modified in auto-tuning process. Users are not allowed to modify them manually. Manual modification may lead to the risk of system runaway.

6.5 Manual adjustment

6.5.1 Overview

Position control loop diagram (turn off the model loop)

Position control loop diagram (turn on the model loop)

Servo unit consists of three feedback loops (current loop, speed loop and position loop) from inside to outside. The more inner loop, the more responsive it is. Failure to comply with this principle will result in poor response or vibration. Among them, the current loop parameters are fixed values to ensure adequate responsiveness, and users do not need to adjust.

Please use manual adjustment in the following occasions:

- When the expected effect can not be achieved by fast adjusting the gain
- When the expected effect is not achieved by automatically adjusting the gain

6.5.2 Adjustment steps

In position mode, if the soft mode (P2-02.0=1) is selected by auto-tuning, the function of model loop will be turned off; in speed mode, the gain of position loop will be invalid.

Increasing response time

- 1. Reducing the filter time constant of torque instruction (P2-35)
- 2. Increasing Speed Loop Gain (P1-00)
- 3. Reducing Integral Time Parameter of Speed Loop (P1-01)
- 4. Increasing the gain of position loop (P1-02)
- 5. Improving Model Loop Gain (P2-49)

Reduce response, prevent vibration and overshoot

- 1. Reducing the Speed Loop Gain (P1-00)
- 2. Increasing Integral Time Constant of Speed Loop (P1-01)
- 3. Reducing the gain of position loop (P1-02)
- 4. Increase the filter time constant of the torque instruction (P2-35)
- 5. Reducing Model Loop Gain (P2-49)

6.5.3 Gain parameters for adjustment

The gain parameters that need to be adjusted:

P1-00 Speed Loop Gain

P1-01 Integral Time Constant of Speed Loop

P1-02 position loop gain

P2-35 Torque Instruction Filtering Time Constant

P2-49 Model Loop Gain

■ Speed loop gain

Because the response of the speed loop is low, it will become the delay factor of the outer position loop, so overshoot or vibration of the speed command will occur. Therefore, in the range of no vibration of mechanical system, the larger the setting value, the more stable the servo system and the better the responsiveness.

Parameter	Name	Default setting	Unit	Range	Modification	Effective
P1-00	Speed loop gain	200	0.1Hz	10~20000	Anytime	At once

■ Integral time constant of speed loop

In order to respond to small inputs, the speed loop contains integral elements. Because this integral factor is a delay factor for servo system, when the time constant is too large, it will overshoot or prolong the positioning time, which will make the response worse.

The relationship between the gain of the speed loop and the integral time constant of the speed loop is approximately as follows:

 $P1-00 \times P1-01 = 636620$

Parameter	Name	Default setting	Unit	Range	Modification	Effective
P1-01	integral time constant of speed loop	3300	0.01ms	15~51200	Anytime	At once

■ Position loop gain

When the model loop is invalid (P2-47.0=0), the responsiveness of the position loop of the servo unit is determined by the gain of the position loop. The higher the position loop gain is, the higher the responsiveness is and the shorter the positioning time is. Generally speaking, the gain of position loop cannot be increased beyond the natural vibration number of mechanical system. Therefore, in order to set the position loop gain to a larger value, it is necessary to improve the rigidity of the machine and increase the number of inherent vibration of the machine.

Parameter	Name	Default setting	Unit	Range	Modify	Effective
P1-02	Position loop gain	200	0.1/s	10~20000	Anytime	At once

■ Filter time constant of torque instruction

When machine vibration may be caused by servo drive, it is possible to eliminate vibration by adjusting the filtering time parameters of the following torque instructions. The smaller the numerical value, the better the response control can be, but it is restricted by the machine conditions. When vibration occurs, the parameter is generally reduced, and the adjustment range is suggested to be 10-150.

Parameter	Name	Default setting	Unit	Range	Modify	Effective
P2-35	Filter time constant of torque instruction 1	100	0.01ms	0~65535	Anytime	At once

■ Model loop gain

When the model loop is valid (P2-47.0=1), the response of the servo system is determined by the gain of the model loop. If the gain of the model loop is increased, the responsiveness is increased and the positioning time is shortened. At this time, the response of the servo system depends on this parameter, not P1-02 (position loop gain). The gain of the model loop is only valid in position mode.

Parameter	Name	Default setting	Unit	Range	Modify	Effective
P2-49	Model loop gain	500	0.1Hz	10~20000	Anytime	At once

6.6 Adaptive

6.6.1 Overview

Adaptive function means that no matter what kind of machine and load fluctuation, it can obtain stable response through automatic adjustment. It starts to automatically adjust when servo is ON.

6.6.2 Notes

- When the servo unit is installed on the machine, it may produce instantaneous sound when the servo is ON. This is the sound when the automatic notch filter is set, not the fault. For the next time the servo is ON, no sound will be emitted.
- When the inertia of the motor exceeds the allowable load, the motor may produce vibration. At this time, please modify the adaptive parameters to match the present load inertia.
- ➤ In adaptive operation, in order to ensure safety, the adaptive function should be executed at any time when the servo enablement can be stopped or turned off urgently.

6.6.3 Operation steps

The factory settings are self-adaptive effective without modifying other parameters. The effectiveness of self-adaptation is controlled by the following parameters.

Par	ameter	Meaning	Default setting	Modification	Effective
P2-01	n.□□□0	Adaptive turn off			Pa power on
1 2-01	n.□□□1	Adaptive turn on	n.□□□l	Servo bb	Re-power on

6.6.4 Inertia mode and related parameters

The adaptive default parameter is defined as small inertia mode. If the load inertia far exceeds the allowable load inertia of the motor (such as 60 times inertia of the 60 motor), the adaptive large inertia mode can be turned on.

Parameter Meaning		Default setting	Modification	Effective	
P2-03	n.0□□□	Adaptive small inertia mode	n.0□□□	Servo bb	Re-power
n.1000		Adaptive large inertia mode	11.0000	Scrvood	on

Parameter	Meaning	Default setting	Modification	Effective
P2-05	Adaptive speed loop gain	400 ^{Note1}	Servo bb	At once
P2-10	Adaptive speed loop integral	500	Servo bb	At once
P2-11	Adaptive position loop gain	100	Servo bb	At once
P2-07	Adaptive inertia ratio	0	Servo bb	At once
P2-08	Adaptive speed observer gain	60	Servo bb	At once
P2-12	Adaptive stable max inertia ratio	30	Servo bb	At once
P2-16	Adaptive motor rotor inertia coefficient	100	Servo bb	At once
P2-19	Adaptive bandwidth	50 ^{Note2}	Servo bb	At once
P6-05	Adaptive large inertia mode speed loop gain	200	Servo bb	At once
P6-07	Adaptive large inertia mode inertia ratio	50	Servo bb	At once
P6-08	Adaptive large inertia mode speed observer gain	40	Servo bb	At once
P6-12	Adaptive large inertia mode max inertia ratio	50	Servo bb	At once

Note 1: DS5 series servo 750W and below driver default value is 400; other power section default value is 200.

Note 2: DS5 series servo 400W and below driver default value is 70; other power section default value is 50.

6.6.5 Recommended inertia ratio parameters

Under the adaptive default parameters, the load can only run steadily under a certain moment of inertia. If the load inertia is large, some parameters need to be adjusted. The recommended parameters are as follows (the parameters are modified under the default parameters).

Motor flange	Inertia	Parameters	
	Within 20 times inertia	Adaptive small inertia mode (default parameters)	
	20-30 times inertia	Set P2-08=50, P2-12=40	
40~90	30-40 times inertia	Set P2-08=50, P2-12=40, P2-07=10	
	40-50 times inertia	Set P2-08=50, P2-12=40, P2-07=30	
		Switch to adaptive large inertia mode or set P2-08=40,	
	50-80 times inertia	P2-12=50, P2-07=50	

Note: The large inertia parameters can still drive a smaller inertia load. For example, when the parameters of 50 times inertia are used in the mechanism of 20 times inertia, only the response will become worse.

6.6.6 Adaptive parameters effect

Parameter Small inertia/large inertia	Name	Default value	Range	Effect
P2-05/P6-05	Adaptive speed loop gain	400/200	200-400	Reduction can improve the inertia capability, but it will reduce the responsiveness, which has a greater impact on the responsiveness.
P2-07/P6-07	Adaptive load inertia ratio	0/50	0-200	Increase can greatly improve the inertia capacity without affecting the responsiveness. Too large will produce vibration.
P2-08/P6-08	Speed observer gain	60/40	30-60	Reducing P2-08 and increasing P2-12 can greatly improve the inertia capability, but
P2-12/P6-12	Adaptive stable max inertia ratio	30/50	30-60	it will reduce the responsiveness, which has a great impact on responsiveness.
P2-10	Adaptive speed loop integral time coefficient	500	200-larger	Adjust according to need, generally increase
P2-11	Adaptive position loop gain coefficient	100	50-200	Adjust according to the need, increasing will make the response fast, reducing will make the response slow
P2-16	Adaptive motor rotor inertia coefficient	100	100-200	Increasing will improve the servo rigidity and enhance anti-disturbance ability, can solve operation jitter.
P2-19	Adaptive bandwidth	50~70	40-80	Increasing will improve the inertia capacity slightly, and has little effect on the responsiveness, to be an auxiliary parameter.

6.6.7 Invalid parameters when adaptive effective

When the adaptive function is effective (P2-01.0=1), the invalid parameters are shown as below:

Item	Parameters	Descriptions	
	P1-00	First speed loop gain	
	P1-05	Second speed loop gain	
	P1-01	First speed loop integral time constant	
	P1-06	Second speed loop integral time constant	
Gain	P1-02	First position loop gain	
	P1-07	Second position loop gain	
	P2-49	Model loop gain	
	P0-07	First inertia ratio	
	P0-08	Second inertia ratio	
Switch	P5-33	/G-SEL gain switch	
Switch	P5-36	/I-SEL inertia ratio switch	

6.7 Vibration suppression

6.7.1 Overview

The mechanical system has a certain resonance frequency. When the servo gain is increased, the continuous vibration may occur near the resonance frequency of the mechanical system. Generally in the range of 400Hz to 1000Hz, it caused the gain can not continue to increase. Vibration can be eliminated by automatically detecting or manually setting the vibration frequency. After the vibration is eliminated, if the responsiveness needs to be improved, the gain can be further improved.

Note:

- (1) Servo responsiveness will change after vibration suppression operation.
- (2) Before performing the vibration suppression operation, please set the inertia ratio and gain parameters correctly, otherwise it can not be controlled properly.

6.7.2 Operation tools

Adjustment mode	Operation tools	Control mode	Operation steps		
Adaptive mode	XinJeServo Mechanical Characteristic Analysis		6.7.4 Vibration Suppression (PC Software)		
Auto-tuning	Panel vibration suppression	Position	6.7.3 Vibration Suppression (Panel)		
mode	XinJeServo Mechanical	mode	6.7.4 Vibration Suppression (PC		
mode	Characteristic Analysis	mode	Software)		
Auto-tuning/ad	Panel vibration suppression		6.7.7 vibration suppression		
aptive mode			(easyFFT)		

Note: The firmware version of the drive is viewed through U2-07.

6.7.3 Vibration suppression (panel)

There are two modes of panel vibration suppression, mode 1(vib-1) and mode 2(vib-2).

■ Difference between Two Kinds of Vibration Suppression

Mode	Display	Changed parameters	
Mode 1	vib-1	Only the parameters related to vibration suppression will be changed.	
Mode 2	Vib-2	It will change the parameters of vibration suppression and the gain of speed loop.	

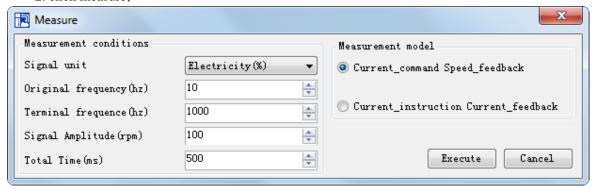
The operation steps:

1. Enter F0-10 in auto-tuning mode, the panel shows vib-1 or enter F0-11, the panel shows vib-2;

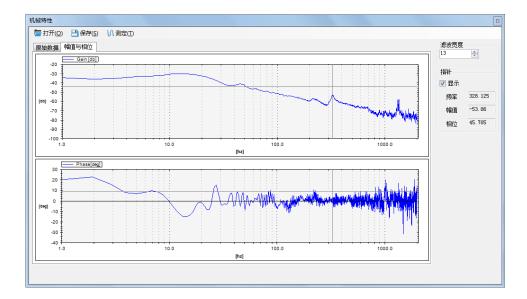
2. Press ENTER, panel shows Son and flashes, turn on the enabler by manual;

3. After turn on the enabler, panel shows tune and flickers, enter auto-tuning process;

4. The upper device starts to send pulses, then it will show done and flicker



- 5. Press STA/ESC to exit
- 6. Vibration suppression parameters are automatically written into the second and first notches (the second notches are preferred when there is only one vibration point). The related parameters are detailed in 6.7.7 notch filter.
- Fault alarm of panel in vibration suppression process


Error code	Meaning	Reasons
Err-1	Failure to search for optimal gain	Too large inertia ratio; too weak rigidity of mechanism
Err-2	 (1) Overrun/alarm occurs during auto-tuning (2) External instruction auto-tuning/Vibration Suppression Mode: Servo turns off the Enabler in auto-tuning process 	Please make sure that there is no overrun and alarm before auto-tuning. Make sure that the enabler is not turned off when auto-tuning
Err-3	Non-position control mode	please auto-tune in position mode
Err-4	Not turn off the adaptive function	please set P2-01.0 to 0, then auto-tune
Err-7	Driver alarm in auto-tuning process	driver alarmed
Err-8	Positioning Completion Signal Instability	Short instruction interval

6.7.4 Vibration suppression (PC software)

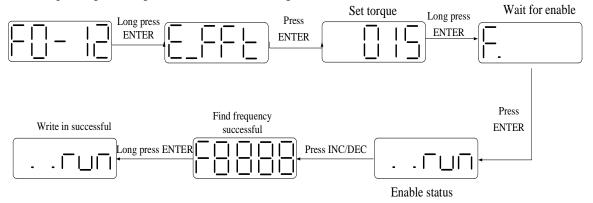
- 1. open XinJeServo software, click mechanical properties;
- 2. click measure;

- 3. set the measure conditions, then click execute;
- 4. select amplitude and phase;

- 5. set the filter width (to see resonance frequencies clearly), find the resonance frequency;
- 6. Notch parameters need to be set manually. Refer to 6.7.7 notch filter for details.

As an example, through the analysis of mechanical characteristics, the resonance frequency is 328 Hz, and the third notch filter can be used. The parameters are as follows:

$$P2-69 = n.1000 P2-77 = 328$$


Note: In both adaptive and auto-tuning modes, if mechanical characteristic analysis is used, the notch can be set manually. If there are multiple resonance points, the third to fifth notch can be configured in turn.

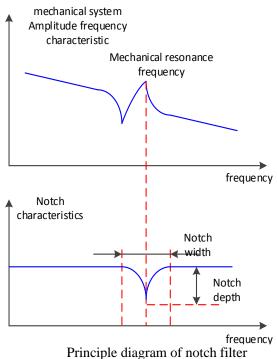
6.7.5 Vibration suppression (manual setting)

If the resonance frequency of the mechanical system is known, the vibration can be eliminated by setting the vibration frequency manually. Please configure the third to fifth notches. The related parameters are detailed in 6.7.7 notch filter.

6.7.6 Vibration suppression (quick FFT)

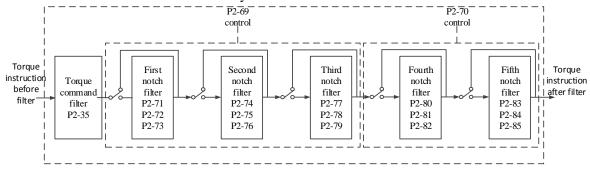
This function can analyze the mechanical characteristics through the parameter F0-12 on the servo operate panel, find out the mechanical resonance frequency and realize the vibration suppression. The complete operation process is shown in the figure below:

The operation steps are described as follows:


1. F0-12, long press 【ENTER】 to enter quick FFT function, it will show "E_FFt".
2. Press 【ENTER】 to enter torque setting interface, it will show the current setting torque, which
is the value of P6-89. Press [INC], [DEC] to increase or decrease torque command. When
increasing the torque command, it is recommended to increase it a little bit to avoid severe vibration of the equipment.
3. After setting the torque command, long press [ENTER] , enter "read to enable" status, it will show 'F".
F.
4. Press 【ENTER】, enable, it will show "run".
5. Press 【INC】,【DEC】 to run forward or reverse and find the resonance frequency. "E_FFt" will shining on the panel when operation. If the resonance frequency is found, it will show "Fxxxx", "xxxx" is the resonance frequency. If failed, it will show "F".
6. Whatever it shown "Fxxxx" or "F", press [INC], [DEC] can find the resonance frequency
again. If the resonance frequency is found, long press 【ENTER】 to set the resonance frequency in the notch filter of servo driver.
e: for above each step, press STA/ESC can return to the last step or exit.

Note

6.7.7 Notch filter


Notch filter can suppress mechanical resonance by reducing the gain at a specific frequency. After the notch filter is set correctly, the vibration can be effectively suppressed and the servo gain can be continuously increased.

The principle diagram of notch filter is as follows:

The servo driver has five sets of notch filters, each with three parameters, notch frequency, notch attenuation and notch bandwidth. The first and second notches are set automatically, and the third, fourth and fifth are set manually.

The torque instruction filter and notch filter are in series in the system. As shown in the figure below, the switch of the notch filter is controlled by P2-69 and P2-70.

Parameter		Meaning	Default setting	Change	Effective
	n.□□□0	First notch off	n.□□□0	A	At once
	n.□□□1	First notch on	11.0000	Anytime	At once
P2-69	n.□□0□	Second notch off	n.□□0□	Anytime	At once
1 2-09	n.□□1□	Second notch on	11.0000		
	n.0□□□	Third notch off	n.0	Anytime	At once
	n.1□□□	Third notch on	11.0000		
	n.□□□0	Fourth notch off	n. 🗆 🗆 🛈	Anytime	At once
P2-70	n.□□□1	Fourth notch on	п.шши		
	n.□□0□	Fifth notch off	n.□□0□	Anytime	At once

n.□□1□	Fifth notch on		

Parameter	Meaning	Default setting	Unit	Range	Change	Effective
P2-71	First notch frequency	5000	Hz	50~5000	Anytime	At once
P2-72	First notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-73	First notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-74	Second notch frequency	5000	Hz	50~5000	Anytime	At once
P2-75	Second notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-76	Second notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-77	Third notch frequency	5000	Hz	50~5000	Anytime	At once
P2-78	Third notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-79	Third notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-80	Fourth notch frequency	5000	Hz	50~5000	Anytime	At once
P2-81	Fourth notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-82	Fourth notch bandwidth	0	Hz	0~1000	Anytime	At once
P2-83	Fifth notch frequency	5000	Hz	50~5000	Anytime	At once
P2-84	Fifth notch attenuation	70	0.1dB	50~1000	Anytime	At once
P2-85	Fifth notch bandwidth	0	Hz	0~1000	Anytime	At once

Note:

- 1. In the adaptive mode, if the vibration is detected, the second notch filter will be automatically configured.
- 2. In the auto-tuning mode, the second and first notches will be automatically configured if the vibration is detected (the second notches will be preferentially opened when there is only one vibration point).
- 3. Whether in self-adaptive or auto-tuning mode, if the mechanical characteristic analysis is sued, it belongs to manual setting of notches, please configure the third to fifth notches.

6.8 Gain adjustment

6.8.1 Model loop control

In the self-tuning mode, in addition to the gain of speed loop and position loop, there is also the gain of model loop, which has a great influence on the servo response. When the model loop is not open, the servo responsiveness is determined by the position loop gain. When the model ring is open, the servo responsiveness is determined by the model loop gain. The model loop is equivalent to the feedforward function in the driver control loop. Refer to 6.5 manual adjustment for its specific function.

When the self-tuning mode is soft, the model loop function will be automatically off. When the self-tuning mode selects fast positioning or fast positioning (control overshoot), the model loop function will be automatically turned on.

Self-tuning mode:

Parameter		Meaning	Default setting	Modify	Effective
	n.□□□1	Soft			
P2-02	n.□□□2 n.□□□3	Fast positioning	n ===2	A time a	A + amaa
P2-02		Quick positioning (control	$-$ n. $\square\square\square$ 3 Any time		At once
		overshoot)			

Selection of self-tuning mode:

(1) Soft (P2-02.0 = 1):

This mode does not turn on the gain of the model loop, and the operation is soft. It is suitable for occasions with insufficient mechanical rigidity and low response requirements.

(2) Quick positioning (P2-02.0 = 2):

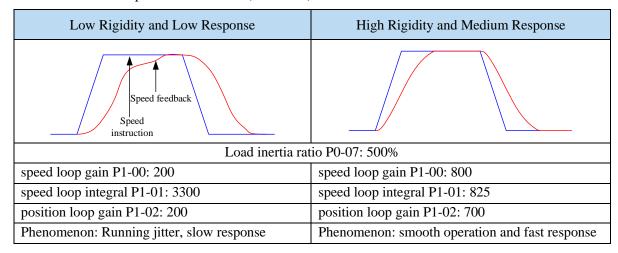
This method has the fastest response to setting parameters, but has no special suppression on overshoot.

(3) Quick positioning (control overshoot) (P2-02.0 = 3):

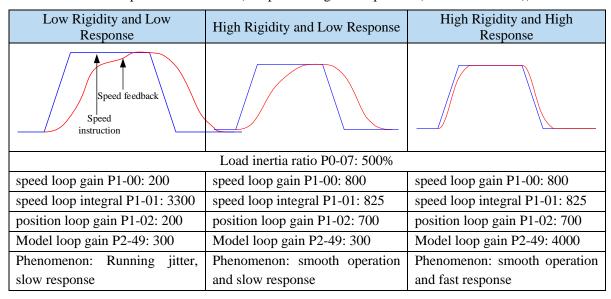
In this way, the setting parameter response is fast, which will inhibit the overshoot.

Load type	Explanation			
Synchronous belt	The adjustment is suitable for the mechanism with lower rigidity such as synchronous belt mechanism.			
Lead screw It is suitable for the adjustment of high rigidity mechanism such as bal mechanism. Please select this type when there is no corresponding structure.				
Rigid The adjustment is suitable for rigid body system and other mechanisms with h				
connection	rigidity.			

Self-tuning	Explanation
mode	
Soft	Soft gain adjustment. In addition to gain adjustment, the notch filter is also adjusted automatically
Fast positioning	Make special adjustment for positioning purpose. In addition to gain adjustment, the model loop gain and notch filter are also adjusted automatically
fast positioning	Pay attention to the adjustment of no overshoot in the positioning purpose. In
(control	addition to gain adjustment, the model loop gain and notch filter are also adjusted
overshoot)	automatically


Parameter		Meaning	Default setting	Modificati on	Effective
	n.□□□1	Soft		A 4	
P2-02	n.□□□2	Fast positioning	n.□□□3	At	at once
	n.□□□3 fast positioning (control overshoot)			anytime	

Model loop function


Parameter		Meaning	Default setting	Modificati on	Effective
D2 47	n.□□□0	Model loop turn off	* ===0	At	A 4 amaa
P2-47	n.□□□1	Model loop turn on	n.□□□0	anytime	At once

Taking DS5 series servo auto-tuning mode and using 750W servo 5 times load inertia as an example:

■ Model loop function turns off (soft mode)

■ Model loop function turns on (fast positioning or fast position(control overshoot))

Note: The above curves only show the effect of the parameters, not the real running curves.

6.8.2 Torque disturbance observation

Disturbance observer can reduce the influence of external disturbance on servo system and improve the anti-disturbance ability by detecting and estimating the external disturbance torque of the system and compensating the torque command.

If the soft mode is selected in the auto-tuning mode, the disturbance observer will be closed automatically, and the gain of the disturbance observer will not change. If the fast positioning or fast positioning (control overshoot) is selected, the disturbance observer will be opened automatically, and the gain of the disturbance observer will be modified to 85. The relevant parameters of this function no need to be set manually by users.

11000	e set illulludily e	y asers.			
$\mathbf{p}_{\mathbf{a}}$	ameter Meaning		Default	Modification	Effective
1 a	таписи	Weaming	setting		Effective
P2-00	n.□□□0	Turn-off of disturbance observer	n.□□□0	Servo bb	At once
P2-00	n1	Turn-on of disturbance observer	11.000	Sel 40 00	At once

Parameter	Meaning	Default setting	Unit	Setting range	Modify	Effective
P2-41	Disturbance	85	%	0~100	Anytime	At once

Observer gain			
ooserver gam			

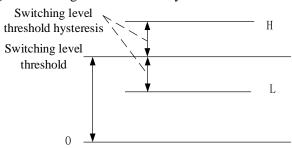
6.8.3 Gain adjustment parameters

Parameter	Meaning	Default setting	Unit	Range	Modify	Effective
P1-00	First speed loop gain	20P1: 400 Others: 200	0.1Hz	10~20000	Servo bb	At once
P1-01	Integral time constant of the first velocity loop	20P1: 1650 Others: 3300	0.01ms	15~51200	Servo bb	At once
P1-02	First position loop gain	20P1: 400 Others: 200	0.1/s	10~20000	Servo bb	At once
P1-05	Second speed loop gain	20P1: 400 Others: 200	0.1Hz	10~20000	Servo bb	At once
P1-06	Second velocity loop integral constant	20P1: 1650 Others: 3300	0.01ms	15~51200	Servo bb	At once
P1-07	Second position loop gain	20P1: 400 Others: 200	0.1/s	10~20000	Servo bb	At once

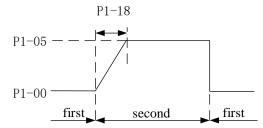
Note: Version 3770 and later added a second set of gain adjustments.

6.8.4 Gain switch

Note: the gain switching function is supported in version 3770 and later.


Par	ameter	Meaning	Default setting	Modify	Effective
	n.==0	0-SI terminal switching gain is valid (the gain switching condition parameter is not valid) 1 - perform gain switching according to gain switching conditions 2 - reserved			
P1-14	n.0001	n.□□X□: Gain switching condition selection 0 - first gain fixed 1 - switching by external SI terminals 2 - large torque command 3 - large speed command 4 - speed command changes greatly 5 - [reserved] - fixed as the first gain 6 - large position deviation 7 - position command 8 - positioning completed 9 - large actual speed A - position command + actual speed	0	Servo bb	At once
P1-15		Gain switching waiting time	5	Servo bb	At once
P1-16		Gain switching level threshold	50	Servo bb	At once
P1-17		Hysteresis of gain switching level threshold	30	Servo bb	At once
P1-18		Position loop gain switching time	2	Servo bb	At once

Note:


(1) The gain switching waiting time is effective only when the second gain is switched back to the

first gain

(2) The definition of gain switching level threshold hysteresis:

(3) The definition of position gain switching time:

(4) Gain switching conditions:

	()	Gain switching condition		Parameter			
P1- 14.1	Condition	Diagram	Notes	P1-15	P1-16	P1-17	
0	The first gain fixed	-	-	invalid	invalid	invalid	
1	Terminal switching	Terminal signal ON Waiting time OFF	Switch the gain through G-SEL signal: G-SEL invalid, first group of gain, G-SEL valid, second group of gain	Valid	invalid	invalid	
2	Torque command	Actual speed Waiting time Hysteresis Torque command time. Hysteresis Hysteresis Hysteresis Hysteresis First second first	When the absolute value of torque command exceeds (level + hysteresis) [%] at the last first gain, switch to the second gain. At the last second gain, the absolute value of the torque command is less than (level - hysteresis) [%], and then wait until P1-15 remain in this state, return to the first gain.	Valid	Valid (%)	Valid (%)	
3	Speed command	Speed command Waiting time Hysteres is level first second first	When the absolute value of the speed command exceeds (level + hysteresis) [RPM] at the last first gain,	Valid	Valid	Valid	

		Gain switching condition	Parameter			
4	Speed command change rate	Actual speed Waiting Hysteresis Speed command change rate time. Hysteresis Hysteresis Hysteresis First second first second first	At the last first gain, when the absolute value of the speed command change rate exceeds (level + hysteresis) [10rpm/s], switch to the second gain. At the last second gain, when the absolute value of the speed command change rate is less than (level-hysteresis) [10rpm/s], wait until P1-15 remain in this state, and return to the first gain.	valid	valid (10rpm/s)	valid (10rpm/s)
5	Speed command high and low speed threshold [not supported temporarily]	Speed command Hysteres is Excessive gain first second First	At the last first gain, when the absolute value of the speed command exceeds (level-hysteresis) [RPM], switch to the second gain, and the gain gradually changes. When the absolute value of the speed command reaches (level + hysteresis) [RPM], the gain completely changes to the second gain. At the last second gain, when the absolute value of the speed command is lower than (level + hysteresis) [RPM], it starts to return to the first gain, and the gain changes gradually. When the absolute value of the speed command reaches (level-hysteresis) [RPM], the gain completely returns to the first gain.	invalid	valid (rpm)	valid (rpm)
6	Position offset	Speed command Position offset Waiting time thysteres is level first second first	Valid only in position mode (other modes are fixed as the first gain) When the absolute value of position deviation exceeds (level + hysteresis)	valid	valid (encoder unit)	valid (encoder unit)
7	Position command	Position command Waiting time first second first	Valid only in position mode (other modes are fixed as the first gain) At the last first gain, if the position command is not 0, switch to the second gain. At the last second gain, if	valid	invalid	invalid

		Gain switching condition		Parameter		
			the position command is in			
			the state of 0 which remains in the waiting time P1-15, it			
			returns to the first gain.			
			Valid only in position mode			
			(other modes are fixed as			
			the first gain)			
			At the last first gain, if the			
		Position command	positioning is not completed, switch to the			
		Waiting time	second gain.			
,	Positioning		At the last second gain, if			
1 X I	completion	Positioning	the state of positioning	valid	invalid	invalid
	completion	completion signal	completion remains in this			
		first second first	state for the waiting time P1-15, the first gain is			
			returned. Note: it is			
			necessary to set the			
			positioning completion			
			detection mode according			
			to P5-01.			
			Valid only in position mode (other modes are fixed as			
			the first gain):			
			At the last first gain, the			
		Speed Threshold feedback	absolute value of the actual			
		hysteresis Waiting Threshold hysteresis	speed exceeds (level +			
		Level A	hysteresis) [RPM], switching to the second		valid	valid
9 1	Actual speed	threshold	gain.	valid	(rpm)	(rpm)
			At the last second gain,		(-F)	(- F)
		first second first	when the absolute value of			
			the inter speed is less than			
			(level-hysteresis) [RPM], wait until P1-15 remain in			
			this state, and return to the			
			first gain.			
			Valid only in position mode			
			(other modes are fixed as			
			the first gain): At the last first gain, if the			
			position command is not 0,			
			switch to the second gain.			
			At the last second gain, the			
		No command pulse	state in which the position command is 0 within the			
		Command duration delay time First gain pulses Second gain Second gain	waiting time P1-15,			
		First gain when static Second gain when stable Second gain when stable	maintains the second gain.			
1	Position	Actual speed < (switching level-	When the position		valid	valid
	command+	switching delay) Actual speed <	command is 0 and the	valid	(rpm)	(rpm)
	actual speed	Switching level Actual speed <(switching level- only speed	waiting time P1-15 reached,		(-r/	(-P)
		Switching delay) only speed integral second gain/	if the absolute value of the actual speed is less than			
		Other first gain	(level) [RPM], the speed			
			integral time constant is			
			fixed at the second speed			
			loop integral time constant			
			(P1-07), and the others return to the first gain. If			
			the absolute value of the			
			actual speed is less than			
1			(level-hysteresis) [RPM],			

	Parameter		
	the speed integral also		
	returns to the integral time		
	constant of the first speed		
	loop (P1-02).		

6.9 Gain adjustment

6.9.1 Load shaking

The following causes cause load wobble:

1. The instruction is not smooth enough when the load inertia is too large.

Countermeasure:

- (1) Use position instruction smoothing filter P1-25;
- (2) Optimizing the instructions of the upper device to reduce the acceleration of the instructions;
- (3) Replace the motor with greater inertia.
- 2. Servo gain is too small, resulting in insufficient rigidity

Countermeasure:

- (1) Increase the gain parameters and rigidity to enhance the anti-disturbance ability.
- 3. Insufficient rigidity of mechanism and equipment sloshing

Countermeasure:

- (1) Reducing gain parameters;
- (2) Optimize the instructions of the upper device and reduce the acceleration of the instructions.

6.9.2 Vibration

The following causes cause machine vibration:

(1) Vibration due to inappropriate servo gain

Countermeasure: Reduce gain (2) Mechanical resonance point

Countermeasure: Setting notch parameters manually or through mechanical characteristic analysis

6.9.3 Noise

In adaptive mode:

(1) Inappropriate servo gain

Countermeasure: Reduce the adaptive control bandwidth (P2-19).

In auto-tuning mode:

(1) Inappropriate servo gain

Countermeasure: Under the mode of rapid adjustment, reduce the rigidity level.

Automatic Adjustment Mode: Reducing Model Loop Gain P2-49

(1) Noise due to mechanical resonance Countermeasure: Refer to 6.8.2 vibration.

7 Alarm

7.1 Alarm code list

Historical record: " \sqrt " means that historical alarms can be recorded; " \circ " is not recorded; The column that can be cleared: " \sqrt " represents the alarm that can be cleared; " \circ " represents the alarm that cannot be cleared.

	mot e	e ciearea.			Property		
Alarm code		Code	Explanation	Historical records	Can be cleared	Whether power on is needed to clear the alarm	Servo status when alarming
	1	EEEE1			0	No	Servo run
EEEE	2	EEEE2	Communication error	0	0	No	Servo run
EEEE	3	EEEE3	between panel and CPU	O	0	No	Servo run
	4	EEEE4			0	No	Servo run
	0	E-010	Firmware version mismatch	0	0	Yes	Servo run
	3	E-013	FPGA Loading Error	0	0	Yes	Servo run
01	5	E-015	Program running error	0	0	Yes	Servo run
01	6	E-016	Processor Running Error	0	0	No	Servo run
	7	E-017	Processor Running Timeout	0	0	Yes	Servo run
	9	E-019	System password error				Servo run
	0	E-020	Parameter loading error	0	0	Yes	Servo run
	1	E-021	Parameter range beyond limit	0	√	No	Servo run
	2	E-022	Parameter conflict	$\sqrt{}$		No	Servo run
02	3	E-023	Sampling channel setting error	0	0	Yes	Servo run
	4	E-024	parameter lost	$\sqrt{}$		No	Servo run
	5	E-025	Erase FLASH error	V	V	No	Servo run
	6	E-026	Initialization FLASH error	$\sqrt{}$	√	No	Servo run
	8	E-028	EEPROM write in error	$\sqrt{}$	√	No	Servo run
03	0	E-030	Bus voltage overvoltage	$\sqrt{}$		No	Servo off
			Bus voltage under voltage 1 Low grid voltage	√	√	No	Servo run
04	0	E-040	Bus voltage under voltage ② Bus voltage undervoltage caused by power failure of driver	0	V	No	Servo off
	1	E-041	Driver power down	0	V	No	Servo run
	3	E-043	Bus Voltage Charging Failure	$\sqrt{}$	$\sqrt{}$	No	Servo off
	4	E-044	Three phase voltage input phase loss	\checkmark	√	No	Servo off
	0	E-060	Module temperature too high	$\sqrt{}$	V	No	Servo run
06	1	E-061	Motor overheating	$\sqrt{}$	V	Yes	Servo run
00	3	E-063	Thermocouple disconnection alarm	√	√	No	Servo run
	0	E-080	Overspeed alarm	$\sqrt{}$	V	No	Servo off
08	2	E-082	Encoder zero position deviation protection 1	√	√	No	Servo off
09	2	E-092	Analog Tref	$\sqrt{}$	V	No	Servo run

			Zero-Calibration Over limit				
	_		Analog Vref	1	1	No	Servo run
	3	E-093	Zero-Calibration Over limit	$\sqrt{}$		- 1.0	
10	0	E-100	Excessive position deviation	√	V	No	Servo run
			External UVW Short Circuit			No	Servo off
	0	E-110	Discovered in	\checkmark			
			Self-Inspection				
11	2	E-112	U phase overcurrent	√	V	No	Servo off
		E-112	protection	V	V		
	3	E-113	V phase overcurrent	$\sqrt{}$		No	Servo off
	,		protection				
13	0	E-150	Power cable disconnection	$\sqrt{}$	V	No	Servo off
	1	E-161	Driver thermal power	$\sqrt{}$		No	
16	1	L-101	overload	٧	V		
	5	E-165	Anti-blocking alarm	√	V	No	Servo run
20	0	F 200	Regenerative resistance	1	1	No	Servo run
20	0	E-200	overload	$\sqrt{}$			
	_	E 220	Communication error of	.1	.1	No	Servo off
	0	E-220	absolute servo encoder	$\sqrt{}$	√		
	1	E-221	Too many CRC errors in	√	V	No	Servo off
	1	L-221	encoder communication	V	٧		
	2	E-222	Absolute value servo encoder	\checkmark		No	Servo off
			battery low voltage alarm	·	,		
22	3 E-223		Absolute value servo	$\sqrt{}$		No	Servo off
			encoder data access alarm			3.7	G 60
	7	E-227	Power on encoder multi-turn	\checkmark	$\sqrt{}$	No	Servo off
			signal data error Absolute Servo Encoder			No	Servo off
	8	E-228	Value Overflow	\checkmark		NO	Servo on
			Encoder electrical angle			No	Servo off
	9	E-229	deviation protection	\checkmark		140	Servo on
			The feedback position			Yes	Servo off
			deviation between motor			105	Servo orr
	6	E-236	encoder and external	\checkmark	$\sqrt{}$		
			displacement sensor is too				
23			large				
23	l _		Fully closed-loop motor	1	,	Yes	Servo off
	7	E-237	encoder and external grating	$\sqrt{}$			
			ruler counter direction reverse			37	C CC
	8	E-238	Full closed loop external grating scale speed overrun	\checkmark		Yes	Servo off
			Timing error in fetching	,	,	No	Servo off
	0	E-240	encoder position data	$\sqrt{}$	$\sqrt{}$	140	Servo on
24			Encoder reponse data is error	1	,	No	Servo off
	1	E-241	code	$\sqrt{}$	$\sqrt{}$	110	Servo orr
	0	E-260	Over range alarm		V	No	Servo run
			Overrun signal connection			No	
	1	E-261	error	$\sqrt{}$		- 1.0	Servo run
26	2	E-262	Control stop timeout		V	No	Servo off
	4	E-264	Excessive vibration	V	V	No	Servo run
	5	E-265	Motor vibration too large	V	V	No	Servo run
	0	E-280	Failed to access motor	√		Yes	Servo off
28	U	E-280	parameters	٧	0		
20	1	E-281	Error writing data to encoder	$\sqrt{}$	0	Yes	Servo off
			EEPROM				
	0	E-310	Motor power mismatch	0	0	Yes	Servo off
21	1	E-311	Motor code missing	V	0	Yes	Servo off
31	2	E-312	Reading motor parameter is	$\sqrt{}$	0	Yes	Servo off
	3	E-313	damaged Encoder software version			Yes	Servo off
	3	E-313	Encoder software version	V	0	1 es	Pervo on

			mismatch				
	4	E-314	Encoder software version not	$\sqrt{}$	0	Yes	Servo off
	7		supported	٧)		
	5	E-315	Unable to read valid motor	2/	0	Yes	Servo off
			parameters	٧	0		
	6	E-316	Reading motor code is	2	0	Yes	Servo off
			inconsistent with setting code	٧	0		

7.2 Analysis of alarm types

DS5 alarm code format is E-XX \square , "XX" means main type, " \square " means sub-type.

Ty	ре	Code	Description	Reasons	Solutions
EE EE	1 2 3 4	EEEE 1 EEEE 2 EEEE 3 EEEE 4	Communication error between panel and CPU	(1) Voltage fluctuation of power supply is large, and low voltage leads to failure of panel refresh; (2) Damage of panel program	 Stable power supply to ensure the stability of power supply voltage. after repower on the driver, if the alarm cannot be removed, please contact the agent or the manufacturer.
	0	E-010	Firmware version mismatch	Downloaded firmware version error	Please contact the agent or the manufacturer
	3	E-013	FPGA loading error	1 program damaged 2 device damaged	Please contact the agent or the manufacturer
	4	E-014	FPGA Access error	(1) Program damage(2) Device damage(3) serious external interference	Please contact the agent or the manufacturer
01	5	E-015	Program running error	Program damage	Please contact the agent or the manufacturer
	6	E-016	Hardware error	1 program damaged 2 hardware damaged 3 Excessive intensity of external interference	 Check the input voltage, whether the input phase is missing or the supply voltage is too low Contact agent or manufacturer
	7	E-017	Processor Running Timeout	Program damage	Please contact the agent or the manufacturer
	9	E-019	System password error	Program damage	Please contact the agent or the manufacturer
	0	E-020	Parameter loading error	Failure of parameter self-checking	Re-energizing can restore default parameters, if there are repeated problems, please contact the agent or manufacturer.
02	1	E-021	Parameter range beyond limit	Setting values are not within the prescribed range	Check parameters and reset them
02	2	E-022	Parameter conflict	Conflict of TREF or VREF Function Settings	P0-01=4, P3-00 set to 1 will alarm
	3	E-023	Sampling channel setting error	Error setting of custom output trigger channel or data monitoring channel	Check that the settings are correct

	1				(1) If it is simple of 220V
	4	E-024	parameter lost	Low voltage of power grid	 (1) If it is single-phase 220V power supply, please connect L1 and L3. (2) show E-024 immediately after power failure (3) Resetting parameters
	5	E-025	Erase FLASH error	Abnormal parameter preservation during power failure	please contact the agent or the manufacturer
	6	E-026	Initialization FLASH error		please contact the agent or the manufacturer
	8	E-028	EEPROM write in error	Voltage instability or chip abnormality	Please contact the agent or the manufacturer
	Bus vol U0-05 i		High voltage of power grid	Check the fluctuation of power grid, 220V driver normal voltage range 200V ~ 240V, 380V driver normal voltage range 360V ~ 420V. If the voltage fluctuation is large, it is recommended to use the correct voltage source and regulator.	
		Bus voltage U0-05 is higher than the actual	Excessive load moment of inertia (insufficient regeneration capacity)	(1) connect external regenerative resistor, (220V: bus voltage U0-05 = 392 discharge starts, U-05 = 377 discharge ends; 380V: U-05 = 750 discharge starts, U-05 = 720 discharge ends;) (2) Increasing Acceleration and Deceleration Time (3) Reducing load inertia (4) Reduce start-stop frequency (5) Replacement of larger power drivers and motors	
03	0	E-030	E-030 preset threshold, 220V Power Supply Machine (U0-05≥402V)	Brake resistance damage or excessive resistance value	Check the regenerative resistor and replace the external resistor with the appropriate resistance value. See chapter 1.4.1 for the selection of the external resistor.
				Acceleration and deceleration time is too short	Extending Acceleration and Deceleration Time
				Hardware Fault of Driver Internal Sampling Circuit	The AC gear of the multimeter measures the input value of the servo LN (R/S/T), which is 220V ± 10% of the normal value. If the power supply voltage is more than 220V+10% (380V+10%), check the power supply voltage; if the power supply voltage; if the power supply voltage is normal, then the servo BB state, monitor U0-05, the voltage measured by the multimeter * 1.414 < U0-05 (within 10V error), then the servo driver is faulty and needs to be sent back for repair.
04	0	E-040	Bus voltage U0-05 is lower	low voltage of power grid when normal	(1) Check the fluctuation of power grid. The normal voltage

			4 4 . 4		6 22017 1:
			than the actual preset threshold. 220V power supply machine $(U0-05 \le 150V)$	power on	range of 220V driver is 200V~240V. If the voltage fluctuation is large, the voltage regulator is recommended. (2) Replacement of larger capacity transformers
				Instantaneous power	Re-energize after voltage
				Hardware Fault of Driver Internal Sampling Circuit	stabilization The AC gear of the multimeter measures the input value of the servo LN (R/S/T), which is 220V ± 10% of the normal value. If < 220V + 10% (380V + 10%), then check the supply voltage; if the supply voltage is normal, then servo BB state, monitoring U0-05, multimeter measurement voltage * 1.414 > U0-05 (error within 10V), then the servo driver is faulty and needs to be sent back for repair
	1	E-041	Driver power down	Driver power off	Check the power supply
	3	E-043	Bus Voltage	low voltage of power grid when normal power on	low voltage of power grid when normal power on
	3	E-043	Charging Failure	Hardware damage	When the driver is on, please pay attention to whether there is relay actuation sound
	4	E-044	Three phase voltage input phase loss	Three phase input power supply is lack of phase	Check the power supply
		E-060	Module temperature is too high (Module	Running under heavy load for a long time	Re-consider the capacity of the motor, monitor the U0-02 torque during operation, whether it is in the value of more than 100 for a long time, if yes, please chose the large-capacity motor or load reduction.
06	0		E-060 temperature U-06 \geq 90°C alarm, U-06 \geq 70°C Warning)	Excessive ambient temperature	(1) Enhance ventilation measures to reduce ambient temperature; (2) Check whether the fan rotates when the servo is enabled; when the module temperature U-06 ≥45°C, the fan opens.
	1	E-061	Motor overheat	Alarm when motor temperature is higher than 95°C	Replace the fan 1 Check whether the motor fan is abnormal 2 Contact the manufacturer for technical support
	3	E-063	Thermocouple disconnection alarm	1 The motor thermocouple of 11kw and above power is disconnected 2 False opening detection and disconnection alarm of motor below 11kw	Check the external thermocouple connection; Shield thermocouple disconnection alarm: P0-69.1 = 1
08	0	E-080	Overspeed (actual speed ≥	Motor code not match	Check if the driver P0-33 is identical with the motor code of

			P3-21/P3-22)		the motor label (the number after
			The maximum		MOTOR CODE), if not, please
			forward speed is		change to the same one, then
			P3-21 and the		power on again.
			maximum reverse		Inspection of motor UVW
			speed is P3-22.	UVW wiring error	wiring, need to be connected in
					phase sequence.
					(1) The maximum speed limit value P3-21/P3-22 was reduced.
					(2) To confirm whether the
				M	external force makes the motor
				Motor speed too fast	rotate too fast, whether the pulse
					input frequency is too high, and
					whether the electronic gear ratio
					is too large.
					(1) Check the encoder cable or change a new one
					(2) Set the servo driver to BB
					state and the driver to U-10.
				Encoder fault	Rotate the motor shaft slowly by
				Lifeoder fault	hand to see if the value of U-10
					changes normally, increasing in
					one direction and decreasing in one direction (0-9999 cycle
					display).
					(1) Check whether the three
				(1) UVW phase	phases of the power cable are
0.0		T 000	Encoder zero	sequence dislocation	connected according to the phase
08	2	E-082	position deviation	(2) Zero position deviation of motor	sequence of UVW
			protection 1	encoder	(2) Check the encoder zero position, please contact the
				cheoder	manufacturer's technical support
			Analog Tref	Analog Zero	Please correct zero without
	2	E-092	Zero-Calibration	Calibration Operation	analog voltage
09		E 002	Over limit	Error	
	3	E-093	Analog Vref Zero-Calibration	Analog Zero Calibration Operation	Please correct zero without
	3		Over limit	Error	analog voltage
					(1) Observe whether the motor is
				In position control, the difference between the	blocked or not.
10	0	E-100	Position offset too	given position and the	(2) Reducing the given speed of
			large	actual position exceeds	position; (3) Increase the deviation pulse.
				the limit value.	(3) Increase the deviation pulse limit P0-23.
					Check if the driver P0-33 is
					identical with the motor code of
				Not match the motor	the motor label (the number after
				code	MOTOR CODE), if not, please
					change to the same one, then power on again.
			External UVW		Inspection of motor UVW
1.1		F 110	Short Circuit	11171117	wiring, need to be in phase
11	0	E-110	Discovered in	UVW wiring error	sequence (brown U, black V,
			Self-Inspection		blue W)
					(1) Measure whether the UVW
				Driver UVW Output	phase resistance of the motor is
				Short Circuit or Motor	balanced. If the phase resistance is unbalanced, replace the motor.
				Failure	(2) Measure whether there is
					short circuit between UVW and
		•	•		

				Load part is blocked High-speed start-stop instantaneous alarm	PE of the motor. If there is short circuit, replace the motor. (3) Measure the driver side UVW output through multimeter (diode gear), black pen P+, red pen to measure UVW; red pen P-, black pen to measure UVW; if anyone is 0 in 6 groups of value, replace the driver. It is suggested that the motor should be operated on an empty shaft to eliminate the load problem. Increasing Acceleration and Deceleration Time
				Encoder problem	(1) Check the encoder cable or change a new one (2) Set the servo driver to BB state and the driver to U-10. Rotate the motor shaft slowly by hand to see if the value of U-10 changes normally, increasing in one direction and decreasing in one direction (0-9999 cycle display).
				U, V, W wiring error	Check the motor UVW wiring and connect it according to the phase sequence (brown U, black V, blue W)
11	2	E-112	U phase overcurrent protection	Driver U, V, W output short circuit or motor fault	(1) Measure whether the UVW interphase resistance of the motor is balanced. If the interphase resistance is unbalanced, replace the motor (2) Measure whether there is a short circuit between UVW and PE of the motor. If there is a short circuit, replace the motor (3) UVW output measurement at driver side: measure UVW with multimeter (diode gear), black probe tests P+ and red probe tests UVW. Then red probe tests P-, black probe tests UVW. If any of the 6 groups values is 0, replace the driver
				Load part has stalled	It is recommended that the motor run without load to eliminate the load problem
		Alarm at the moment of high-speed start stop	Increase acceleration and deceleration time		
				Encoder problem	(1) Check the encoder cable or replace the encoder cable (2) Set the servo driver to bb state, adjust the driver to U0-10, slowly rotate the motor shaft by hand to see whether the value change of U0-10 is normal, increasing in one direction and decreasing in the other (0~9999)

		I	T	T	
					cycle display).
					Check the motor UVW wiring
				U, V, W wiring error	and connect it according to the
					phase sequence (brown U, black
					V, blue W)
					(1) Measure whether the UVW
					interphase resistance of the motor
					is balanced. If the interphase
					resistance is unbalanced, replace
					the motor
					(2) Measure whether there is a
					short circuit between UVW and
				Driver U, V, W output	PE of the motor. If there is a
				short circuit or motor	short circuit, replace the motor
				fault	(3) UVW output measurement at
					driver side: measure UVW with
					multimeter (diode gear), black
			V phase		probe tests P+ and red probe tests
11	3	E-113	overcurrent		UVW. Then red probe tests P-,
11	3	L-113	protection		black probe tests UVW.
			protection		If any of the 6 groups values is 0,
					replace the driver
					It is recommended that the motor
				Load part has stalled	run without load to eliminate the
					load problem
				Alarm at the moment of	Increase acceleration and
				high-speed start stop	deceleration time
					(1) Check the encoder cable or
					replace the encoder cable
					(2) Set the servo driver to bb
					state, adjust the driver to U0-10,
				Encoder problem	slowly rotate the motor shaft by
				r	hand to see whether the value
					change of U0-10 is normal,
					increasing in one direction and
					decreasing in the other (0~9999
	-				cycle display).
					Disconnect the power supply of
				A	the driver and check the
12		F 150	Power cable	Any phase in UVW of	connection of the power cable. It
13	0	E-150	disconnection	driver, cable or motor	is suggested that the multimeter
				broken	be used to test the condition.
					After eliminating the errors, the
					driver should be re-energized.
					Check if the driver U3-00 is
				Not mot-1- 41- 4	identical with the motor code of
				Not match the motor	the motor label (the number after
				code	MOTOR CODE), if not, please
					change to the same one, then
				Overland the	power on again.
			Deixor 41 1	Overload, the actual	
16	1	E-161	Driver thermal	operating torque	Imageness the assessed C. 1.
			power overload	exceeds the rated	Increase the capacity of drivers
				torque, and continuous	and motors. Extend the
				operation for a long	acceleration and deceleration
				time. (Monitor U0-02 to check the actual	time and reduce the load.
					Monitor the U-00, whether it is
				operating torque. If the motor is in normal	running over speed.
		<u> </u>		operation, it will not	

				jam or jitter. If the U0-02 is longer than 100, it will be considered improper selection of the motor.) Mechanisms are impacted, suddenly weighted and distorted. Motor action when motor brake is not opened Wrong wiring of	Eliminate mechanical distortion. Reduce load Measure the voltage of the brake terminal and decide to open the brake. It is suggested to use servo BK signal to control the brake lock. If it is not servo control, attention must be paid to the timing of brake opening and motor action. Check the UVW connection of power cable to see if there is any phase sequence error.
				encoder cable, power cable or broken wire or loose pin of connector plug	The multimeter is used to measure whether all the encoder cable are on. Check whether the plug is loose, for machine vibration, whether the plug has shrinkage pin, virtual welding, damage.
				In multiple mechanical wirings, incorrect connection of motor cable to other shafts leads to incorrect wiring. Poor gain adjustment	Detection of servo wiring, the motor cable, encoder cable are correctly connected to the corresponding shaft.
				results in motor vibration, back and forth swing and abnormal noise.	Readjustment of gain parameters
				Driver or motor hardware failure;	There are servo cross test or motor empty shaft on site, F1-01 trial operation, F1-00 jog run can not rotate uniformly; Replace the new driver or motor and send the malfunction machine back to the manufacturer for repair.
16	5	E-165	Anti-blocking alarm Judging that the current motor output torque is greater than P3-28/P3-29 (internal forward/reverse torque limit), and the time reaches P0-74 (unit ms), and the speed is lower than P0-75 (unit 1 rpm).	(1) Machinery is impacted, suddenly becomes heavier and distorted; (2) When the brake of the motor is not opened, the motor moves; (3) The parameter setting is unreasonable.	(1) Eliminate the factors of mechanical distortion. Reduce load (2) Measure the voltage of the brake terminal and determine the opening of the brake; It is suggested to use servo BK brake signal to control the brake lock. If it is not servo control, attention must be paid to the timing of brake opening and motor action. (3) Monitor the actual output torque range of U0-02 and check whether the setting of P3-28/29

			1		
					torque limit is reasonable. (After version 3760, the output torque limit setting parameters of anti locked rotor alarm are P3-38 and P3-39)
				High Voltage Fluctuation in Power Grid	Stable the input voltage
				Selection of regenerative resistance is too small	Replacement of higher power regenerative resistors (refer to chapter 1.4.1)
				Acceleration and deceleration time is too short	Extending Acceleration and Deceleration Time
20	0	E-200	Regenerative resistance overload	Hardware damage	The AC gear of the multimeter measures the input value of the servo LN (R/S/T), which is 220V ± 10% of the normal value. If the power supply voltage is more than 220V+10% (380V+10%), check the power supply voltage; if the power supply voltage; if the power supply voltage is normal, then in servo BB state, monitor U0-05, the voltage measured by the multimeter * 1.414 < U0-05 (within 10V error), then the servo driver is faulty and needs to be sent back for repair.
				Motor matching error	Check if the motor matches correctly
22	O E-220 Communication error of absolute servo encoder		error of absolute	Unconnected encoder cable or poor contact	Check whether the value of U0-54 increases rapidly. If yes, the encoder circuit is disconnected. Disconnect the power supply of the driver, check the connection of the encoder cable, if there is cable loosening, it is recommended to use the multimeter to test the conduction condition; after eliminating errors, power on again Hot plugging is strictly prohibited, and special cables are required for tank chains.
				Received encoder data errors, and the number of errors exceeds the number of error retries of encoder registers P0-56	Check whether the value of U0-79 and U0-54 increase. If yes, the encoder is interfered. Encoder wire and strong power do not have the same pipeline wiring; install filter on servo driver power input side; encoder wire sleeves magnetic ring; shut down welding machine type of equipment with large interference
	1	E-221	Too many CRC errors in encoder communication	The received encoder data is wrong and the number of errors exceeds the value in encoder error retry	Encoder interfered, isolate interference source

			number register P0-56	
			Battery Voltage in Battery Box of Encoder cable is less than 2.75V	Please replace the battery while keeping the power supply ON of the servo driver in order to avoid the error of encoder position information. Battery specification: No.5 battery, 3.6V (model CP-B-BATT, CPT-B-BATT)
2	E-222	Absolute value servo encoder battery low voltage alarm (can shield this alarm)	Power on alarm for new machine	(1) When the absolute value motor is powered off, the memory position depends on the battery on the encoder cable. Once the encoder cable and the motor are disconnected, the power supply can not be carried out, which will lead to the loss of the current position of the motor, it will alarm 222. Please set F0-00=1 to clear the alarm, it can be used normally. (2) The alarm can be shielded by using F0-79. When P0-79 is set to 1, it will be used as a single-loop absolute value motor, and the current position will not be remembered when power off.
3	E-223	Data access alarm of absolute value servo encoder	Encoder cable with battery box is not used for multi-turn absolute motor Generally, it is the problem of the encoder itself, or the power supply of the encoder is unstable Abnormal power on of main control chip of multi-turn absolute value servo encoder ADC sampling is out of range, some resistance and capacitance devices have problems or the signal consistency of magnetic sensor is poor	Please use encoder cable with battery box; Power off and power on again (the driver panel shall be completely off). If the alarm cannot be removed, please contact the agent or manufacturer

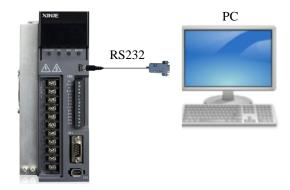
Ty	pe	Code	Description	Reasons	Solutions
	7	E-227	Power on encoder multi turn signal data error	Generally, it is the problem of the encoder itself, or the power supply of the encoder is unstable	In the case of no battery, unplugging the encoder cable may cause this alarm.
22	8	E-228	Absolute value servo encoder value overflow	The motor runs in one direction continuously, the encoder data value is too large, overflow	 Set F1-06 = 1, clear the absolute encoder's multiple turns; Set P0-79 = 2, the alarm can be shielded.
	9	E-229	Encoder electrical angle deviation	When the encoder zero position is offset or the motor power cable phase	(1) Check whether the three phases of the power cable are connected according to the phase

			protection	sequence is wrongly connected, the motor gets wrong data during control calculation due to the excessive electrical angle deviation, which may cause the motor to run away, and the electrical angle zero position deviation alarm will be triggered if the motor cannot work normally.	sequence of UVW (2) Check the encoder zero position, please contact the manufacturer's technical support
23	6	E-236	The error between motor encoder feedback and displacement sensor feedback (user command resolution) exceeds the setting value of P9-02	The error between motor encoder feedback and grating encoder feedback (user command resolution) exceeds the setting value of P9-02	① Mechanism error. The motor outputs the shaft position directly and reaches the moving platform through the mechanism. The feedback of the grating ruler is directly from the moving platform, and there will be errors in it after passing through the synchronous belt or lead screw ② Grating ruler installation is not parallel ③ Set P9-05 to P9-08 reasonably
	7	E-237	Fully closed-loop motor encoder and external grating ruler counter direction reverse	When P9-02 is set to 0, the grating ruler is broken or not connected correctly.	Check the grating ruler and power on again
	8	E-238	Full closed loop external grating scale speed overrun	The error between the feedback speed of motor encoder and that of grating ruler exceeds the set value of P9-04.	Check that the correct P9-05 ~ P9-08 is selected for the mechanism and power on again.
24	0	E-240	Timing error in fetching encoder position data	① The number of consecutive errors in encoder data update sequence is greater than the value in P0-68 ② CPU timer fluctuates	 Restart driver Check the arrangement of transmission cables to ensure that the strong and weak current are wired separately. High current equipment is supplied separately. The grounding is good.
	1	E-241	Encoder responding data scrambling	The received encoder data is wrong and the number of errors exceeds the value in encoder error retry number register P0-56	 Check the arrangement of transmission cables to ensure that the strong and weak current are wired separately. High current equipment is supplied separately. The grounding is good.
26	0	E-260	Over range alarm	Overrun signal was detected and the overrun processing mode was configured to alarm	If you do not want to alarm immediately when the overrun occurs, you can change the overrun signal processing mode.
20	1	E-261	Overrun signal connection error	(1) When the motor is in forward rotation, it encounters reverse overrun signal.	Check over-run signal connection and over-run terminal allocation.

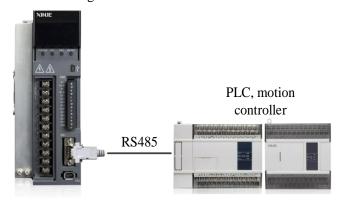
		1		(2)	1
				(2) When the motor is in reverse rotation, it	
				encounters forward	
				overrun signal.	
	2	E-262	Control stop timeout	 Excessive inertia Stop timeouts too short The setting of braking torque is too small. 	(1) Reduce inertia or use brake motor;(2) Increase the stop timeout time P0-30;(3) Increase braking torque P3-32.
	4	E-264	Excessive vibration	(1) Oscillation caused by external forces (2) Load inertia is large and the setting of load inertia ratio is wrong or the gain is too small, which leads to the oscillation of positioning.	(1) Check the source of external force to see if there are any problems in mechanical installation; (2) Increase the servo gain to improve the anti-disturbance ability; (3) Acquisition speed curve analysis; When the first three peaks are convergenced after pulse instruction completed (0.8* first peak > second peak and 0.8* second peak > third peak), the driver should not alarm, which can adjust the relevant threshold. When the first three peaks speed are not less than 300 rpm for three consecutive times after the completion of the pulse instruction, the driver will alarm. (4) Contact manufacturers for technical support
	5	E-265	Excessive motor vibration	Mechanical vibration	Check the motor installation
20	0	E-280	Failed to read motor parameters	Request to read EEPROM failed	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
28	1	E-281	Error writing data to encoder EEPROM	Request to write EEPROM failed	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
31	0	E-310	Power mismatch between driver and motor	Such as 750W driver with 200W motor	Match the correct motor and driver, and use it after setting the P0-33 motor code correctly
31	1	E-311	When the motor code is read automatically, the motor parameter is 0, and the driver P0-33 = 0	Motor code not set	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
	2	E-312	Reading motor parameter is damaged	Parameter CRC verification failed	On the premise that the driver and motor are matched and can be used together, read the alarm

3	E-313	Encoder software version mismatch	Encoder software version mismatch	shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly ① Update driver firmware to maximize current motor parameter performance ② Read the alarm shielding position of motor parameters through p0-53, and set the motor code of P0-33 correctly. At this time, the motor parameters are in the driver, which can work normally, but may affect some
4	E-314	Motor code does not match software version	Encoder hardware version is higher than driver firmware version	performance Contact the manufacturer's technical support to update the driver firmware
5	E-315	When the motor code is read automatically, the motor parameter is 0, and the driver $P0-33 \neq 0$	Read the motor code is 0	On the premise that the driver and motor are matched and can be used together, read the alarm shielding position of motor parameters through P0-53, and set the motor code of P0-33 correctly
6	E-316	Auto-read code error	The auto read motor code is inconsistent with the motor code set in P0-33	Check U3-00 and motor label. ① If the two values are the same, change P0-33 motor code or set P0-33 to 0 to read motor code automatically; ② If the two values are different, contact the manufacturer for technical support

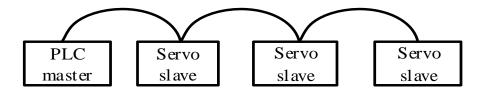
8 Mod

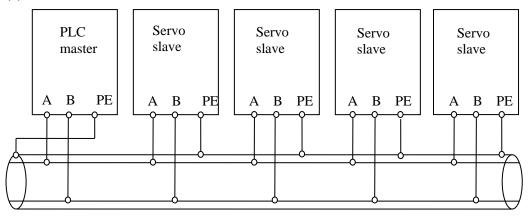

Modbus-RTU communication

The company provides users with the general RS485 communication interface in industrial control. The communication protocol adopts MODBUS standard communication protocol, and the servo can be used as the slave station to communicate with the master device (such as PLC controller and PC) with the same communication interface and the same communication protocol, and the HMI can also be connected through the communication interface. Realize the remote operation of the frequency converter by the user.


This series of servo Modbus communication protocol supports RTU mode. The following is a detailed description of the communication protocol.

8.1 Communication wiring


1. RS-232 communication wiring


2. RS-485 communication wiring


- 3. PLC and servo communication (Servo driver and motor are all well grounded)
- (1) Best recommendation: hand in hand mode

(2) General recommendation: branch structure

(3) Not recommended: star connection

8.2 Communication parameters

1. RS485 communication parameters

Parameter	Meaning	Default setting	Range	Modify	Effective
P7-00	RS485 station number	1	0~100	Servo bb	At once

Parameter	Function	Unit	Default setting	Suitable mode	Modify	Effective
	Communication setting	-	n.2206	All	Servo bb	At once
	Setting		Default setting		Range	
	n.□xxx	Parity bit	0	0: no parity 1: odd 2: even		
	n.x□xx	Stop bit	0	0: 2-bit 2: 1 bit		
P7-01	n.xx□□	Baud rate	06	00: 300 01: 600 02: 1200 03: 2400 04: 4800 05: 9600 06: 19200 07: 38400 08: 57600 09: 115200 0A: 192000 0B: 256000 0C: 288000 0D: 384000 0E: 512000 0F: 576000 10: 768000 11: 1M 12: 2M 13: 3M		

		14: 4M
		15: 5M
		16: 6M

Parameter	Meaning	Default setting	Setting range	Modify	Effective
P7-02	RS485 communication protocol	1	1-Modbus Rtu protocol 2-Xnet bus protocol 3-read Xnet bus torque	Servo bb	At once

2. RS232 communication parameter setting

Parameter	Meaning	Default setting	Range	Modify	Effective
P7-10	RS232 station no.	1	0~100	Servo bb	At once

Parameter	Parameter	Setting unit	Default setting	Suitable mode	Modify	Effective
	Communication configuration	-	n.2206	All	Servo bb	At once
	Parameter setting	Function	Default setting		Range	
	n.⊐xxx	Parity bit	0	0: no parity 1: odd 2: even		
	n.x□xx	Stop bit	0	0: 2-bit 2: 1-bit		
P7-11	n.xx□□	Baud rate	06	00: 300 01: 600 02: 1200 03: 2400 04: 4800 05: 9600 06: 19200 07: 38400 08: 57600 09: 115200 0A: 192000 0C: 288000 0D: 384000 0E: 512000 0F: 576000 10: 768000 11: 1M 12: 2M 13: 3M 14: 4M 15: 5M 16: 6M)))	

8.3 Communication protocol

When communicating in a MODBUS network, this protocol determines that each controller needs to know their device address, identify messages sent by address, and decide what actions to take. If a response is needed, the controller generates the feedback and sends it out using Modbus protocol. In other networks, messages containing Modbus protocol are converted to frame or packet structure which can be used in this network. This conversion also extends the method of solving node address, routing path and error detection according to specific network.

8.3.1 Character structure

(1-8-	(1-8-2 format, no parity)									
Start bit	0	1	2	3	4	5	6	7	Stop bit	Stop bit
(1-8-1 format, odd parity)										
Start bit	0	1	2	3	4	5	6	7	Odd parity	Stop bit
(1-8-	-1 fe	ormat	, evei	n pari	ty)				py	
Start bit	0	1	2	3	4	5	6	7	Even parity	Stop bit
(1-8-1 format, no parity)										
Start bit	0	1	2	3	4	5	6	7	Stop bit	

The default data format of servo driver is: 1-bit start bit, 8-bit data bit, 1-bit stop bit.

8.3.2 Communication data structure

1. RTU mode:

START	Keep no input signal greater than or equal to 10ms			
Address	Communication address: 8-bit binary address			
Function	Function code: 8-bit binary address			
DATA $(n-1)$	Data content:			
DATA 0	N*8-bit data, N<=8, max 8 bytes			
CRC CHK Low	CRC parity			
CRC CHK High	16-bit CRC parity code consists of two 8-bit binary			
CKC CHK High	combinations			
END	Keep no input and output signal greater than or equal to 10ms			

2. Communication address:

Modbus address is provided in the manual, and the corresponding table of Modbus address is queried in Appendix 4.

3. Function code and data:

Function code	Explanation
03H	Read out the contents of registers, read out multiple registers, but not more than
	31 at a time, and only read the data in the same group at a time
06H	Write the data to register

(3) Function code 03H: read register data

For example: read the U0-05 register address H1005 (bus voltage).

RTU mode:

Inquiry info	ormation format	Response message format			
Address	01H	Address	01H		
Function code	03H	Function code	03H		
	10H	Dryta grantity	0211		
register address	05H	Address	02H		
ma aistan ayantity	00H	Data content	01H		
register quantity	01H	Address Function code Byte quantity Data content CRC CHECK Low	34H		
CRC CHECK Low	90H	CRC CHECK Low	B8H		
CRC CHECK High	СВН	CRC CHECK High	03H		

(4) Function code06H: write the data in the register

For example: write 300 rpm to the address of P3-18 register of inching speed.

RTU mode:

Inquiry information format		Response message format			
Address	01H	Address	01H		
Function code	06H	Function code	06H		
ragistar address	03H	ragistar address	03H		
register address	12H	Address	12H		
Data content	01H	Data content	01H		
Data content	2CH	Data content	2CH		
CRC CHECK Low	29H	CRC CHECK Low	29H		
CRC CHECK High	С6Н	CRC CHECK High	С6Н		

4. Parity code

RTU mode: double byte hexadecimal number.

The CRC field is a two-byte, 16-bit binary value. It is calculated by the sender and added to the message; when it is added, it is first the low byte and then the high byte, so the high byte of CRC is the last byte of the sent message. The receiving device recalculates the CRC of the received message and compares it with the value in the received CRC field. If the two values are different, there is an error in the received message, discards the message frame, makes no response, and continues to receive the data of the next frame. Refer to the description of Modbus protocol for CRC verification calculation method.

8.4 Communication example

8.4.1 Communication with Xinje PLC

Xinje PLC communicates with Xinje two drivers through 485, reads the speed of motor and writes the torque limit of motor.

- 1. Hardware wiring: if the customer uses AB terminal of Xinje PLC for 485 communication, just connect the 14 and 15 pins of the driver to AB terminal of PLC.
- 2. Parameter setting: the communication parameters of the driver and PLC are set in the same way, such as baud rate, parity, data bit, slave station, etc. the communication protocols of the Xinje PLC and servo are standard Modbus RTU, namely 19200bps, 1-8-1-even parity.

The setting parameters are as follows:

P7-00 Station No. 1, 2

P7-01.0 ~ 1 baud rate 06

P7-01.2 stop bit 2

P7-01.3 check bit 2

Note: if the communication parameter settings of the upper computer and the lower computer are inconsistent, the communication will fail.

- 3. Software program: the register in which the station number, communication address and contents are marked when writing instructions.
- (1) Station number: the value set for servo driver P7-00. K1 indicates that P7-00 is set to 1; K2 indicates that P7-00 is set to 2.

```
M0 SM13

REGW K1 H31C D0 K4

M2 SM13

REGW K2 H31C D4 K4
```

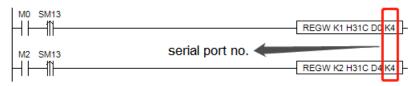
(2) Communication address: the address of the servo slave station. For the address of a register, please refer to Appendix 4. MODBUS address table.

```
M0 SM13

Communication

M2 SM13

address

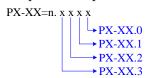

REGW K1 H31C D0 K4

REGW K2 H31C D4 K4
```

(3) register: to store the paramter value of write in address.

(4) serial port no.: PLC RS485 serial port number.

Appendix


Appendix 1. Group P parameters

Modification and effective:

- "o" means modifying when servo OFF and take effect at once.
- "\" means modifying anytime and take effect at once.
- "•" means modifying when servo OFF and take effect when power on again.
- " Δ " means modifying anytime and take effect when the motor doesn't rotate.

For parameters set in hexadecimal system, the prefix "n." is added to the setting value to indicate that the current setting value is hexadecimal number.

Composition of parameters:

P0-XX:

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P0-01	Control mode 1 1-Internal Torque Mode 2-External Analog Torque Mode 3-Internal speed Model 4-External Analog speed Mode 5-Internal Location Mode 6-External Pulse Position Mode 7-External Pulse speed Mode 8-XNET Bus Torque Mode 9-XNET Bus Speed Mode 10-XNET Bus Location Mode	-	6	1~10	0	1 2 3 4 5 6 7 8 9 10	<u>5.1.1</u>
P0-02	Control mode 2 (ditto)	-	6	1~10	0	1 2 3 4 5 6 7 8 9 10	<u>5.1.1</u>
P0-03	Enabling mode 0-not enabled 1-IO enable 2-Software Enablation 3-XNET Bus Enablation	-	1	0~3	0	1 2 3 4 5 6 7 8 9 10	5.2.2
P0-04	Rigidity grade	-	20P1: 0 20P2/20P4/20P7: 15 >=21P5: 10	0~63	Δ	1 2 3 4 5 6 7 8 9 10	6.3.3
P0-05	Definition of rotation direction 0- positive mode	-	0	0~1	•	1 2 3 4 5 6 7 8 9 10	5.2.3

	1- negative mode						
P0-07	First inertia ratio	1%	20P1: 800 >20P1: 200	0~5000 0	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.2.1</u>
P0-09.0	Forward Direction of Input Pulse Instruction 0-Forward Pulse Counting 1-Reverse Pulse Counting	-	0	0~1	•	6 7	5.3.2
P0-09.2	Input pulse command filter time	-	F	0~F	•	6 7	<u>5.3.2</u>

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P0-09.3	Predistribution of input pulse command filter	-	0	0~7	•	6 7	<u>5.3.2</u>
P0-10.0	0-CW/CCW 1-AB 2-P+D	-	2	0~2	0	6 7	<u>5.3.2</u>
P0-11~ P0-12	Number of instruction pulses per cycle 0: Electronic gear ratio Non-0: Number of command pulses required for motor rotation	1 pul	10000	0~99999999	0	5 6	5.3.1.1
P0-13	Electronic Gear Numerator	-	1	0~65535	0	5 6	5.3.1.1
P0-14	Denominator of Electronic Gear	-	1	0~65535	0	5 6	5.3.1.1
P0-15	Pulse frequency corresponding to rated speed	100Hz	1000	1~10000	0	7	<u>5.4.3.2</u>
P0-16	Speed command pulse filter time	0.01ms	100	0~10000	0	7	5.4.3.3
P0-18	Encoder feedback pulse number per turn (low bit)	0	0	0~9999	V	1 2 3 4 5 6 7 8 9 10	5.8
P0-19	Encoder feedback pulse number per turn (high bit)	10000	10000	0~9999	V	1 2 3 4 5 6 7 8 9 10	<u>5.8</u>
P0-23	pulse offset limit	0.01 turn	2000	0~65535	√	5 6 10	<u>5.3.1.6</u>
P0-24	Type selection of discharge resistance (version 3640 and before) 0: built in 1: external Power protection mode of discharge resistance (version 3700 and later) 0 - cumulative discharge time 1 - average power mode 1 2-average power mode 2	-	0	0~1	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.6</u>
PO-25	Power Value of Discharge Resistance	W	Set as model	1~65535	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.6</u>

P0-26	Discharge resistance value	Ω	Set as model	1~500	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.6</u>
P0-27	Servo shutdown the enable stop mode 0-Inertial Operation Stop 2-deceleration stop	-	0	0~5	0	1 2 3 4 5 6 7 8 9 10	5.2.4
Servo Overrun Stop Mode (P0-28.0) 0-deceleration stop 1 1-Inertial Stop P0-28 2-deceleration stop 2 3-Alarm Stop Overtravel alarm shield switch (P0-28.1) 0-not shield the alarm 1-shield the alarm		2	0~3		1 2 3 4 5 6	504	
	3-Alarm Stop Overtravel alarm shield switch (P0-28.1) 0-not shield the alarm	-	0	0~1	0	7 8 9 10	5.2.4
P0-29	Servo Alarm Stop Mode 0-Inertial Operation Stop 2-deceleration stop	-	2	0~2	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.4</u>
P0-30	stop timeout time	1ms	20000	0~65535	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.3</u>
P0-31	Deceleration stop time	1ms	25	0~5000	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.3</u>
P0-33	Set the motor code	-	0	0~ffff	•	1 2 3 4 5 6 7 8 9 10	4.7

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P0-53	Read motor parameter alarm shield bit 0-not shield alarm shield alarm 1- Shield the alarm of not read valid motor parameter	-	0	0~1	•	1 2 3 4 5 6 7 8 9 10	-
	Fan switch (P0-69.0) 0- Turn on the fan when the temperature greater than 45°C and turn off the	-	1	0~1	√	1 2 3 4 5 6 7 8 9 10	
P0-69	fan when less than 42°C (hysteresis 3°C) 1 - Turn on the fan after enabling, turn off the fan when not enabling Large motor thermocouple break alarm shield switch (P0-69.1) 0-not shield thermocouple disconnection alarm 1-shield thermocouple disconnection alarm		0	0~1			-
P0-74	Blocking alarm time	ms	0	0~5000	√	1 2 3 4 5 6	<u>5.8.1</u>

						7 8 9 10	
P0-75	Blocking alarm speed	rpm	50	5~9999	√	1 2 3 4 5 6 7 8 9 10	5.8.1
P0-79	Absolute Encoder Battery Undervoltage Alarm Switch (firmware version 20160304 and later) 0-used as absolute value encoder 1-used as incremental encoder 2-used as absolute value encoder, ignoring multi turn overflow alarm	-	1	0~2	•	1 2 3 4 5 6 7 8 9 10	<u>5.7.1</u>
P0-80	Thermal Power Protection of Motor 0-current protection 1-Average Thermal Power Protection 2-Analog Thermal Power Protection	-	2	0~2	•	1 2 3 4 5 6 7 8 9 10	ı
P0-92~ P0-93	32-bit electronic gear ratio numerator. take effect when P0-11~P0-14 is 0. P0-92*1 + P0-93 *10000	-	1	1~9999 1~65535	0	5 6	5.3.1.1
P0-94~ P0-95	32-bit electronic gear ratio denominator. take effect when P0-11~P0-14 is 0. P0-94*1 + P0-95 *10000	-	1	1~9999 1~65535	0	5 6	<u>5.3.1.1</u>

P1-XX:

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P1-00	First speed loop gain	0.1Hz	20P1: 400 Others: 200	10~20000	√	1 2 3 4 5 6 7 8 9 10	<u>6.5.3</u>
P1-01	Integral Time Constant of the First Speed Loop	0.01ms	20P1: 1650 Others: 3300	15~51200	√	1 2 3 4 5 6 7 8 9 10	6.5.3
P1-02	First position loop gain	0.1/s	20P1: 400 Others: 200	10~20000	√	1 2 3 4 5 6 7 8 9 10	6.5.3
P1-10	Speed feedforward gain	1%	0	0~300	√	5 6 7 10	-
P1-11	Speed feedforward filter time	0.01ms	50	0~10000	√	5 6 7 10	-
P1-22	Speed Instruction Filter Selection 0-first order low pass filter 1-Smooth Average Filter	-	0	0~1	0	3 4 7	5.4.1.4
P1-23	speed instruction filter time	0.1ms	0	0~65535	0	3 4 7	5.4.1.4
P1-24	Position command acceleration and deceleration filtering	0.1ms	0	0~65535	Δ	5 6 10	5.3.1.7

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
	time						
IP1-25	position instruction smooth filter time	0.1ms	0	0~65535	Δ	5 6 10	<u>5.3.1.7</u>

P2-XX:

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P2-00.0	Disturbance observer switch 0- OFF 1- ON	-	0	0~1	0	1 2 3 4 5 6 7 8 9 10	6.1.4
P2-01.0	Adaptive mode switch 0-OFF 1-ON	-	3KW and below: 0 Others:1	0~1	•	1 2 3 4 5 6 7 8 9 10	6.6.3
P2-01.1	Adaptive level 0-high response 1-low noise	-	As the model	0~1	•	1 2 3 4 5 6 7 8 9 10	-
P2-02.0	Auto-tuning mode 1-soft 2-fast positioning 3-fast positioning, control the overshoot	-	3	1~3	V	1 2 3 4 5 6 7 8 9 10	6.1.3
P2-02.2	Load type (valid only during auto-tuning) 1- synchronous belt 2- screw rod 3-Rigid Connection	-	2	1~3	V	1 2 3 4 5 6 7 8 9 10	6.1.3
P2-03.3	Adaptive load type 0-Small Inertia Mode 1-Large Inertia Mode	-	0	0~1	•	1 2 3 4 5 6 7 8 9 10	6.6.4
P2-05	Adaptive mode speed loop gain (standard)	0.1Hz	20P1/20P2/ 20P4/20P7: 400 >=21P5: 200	1~65535	0	1 2 3 4 5 6 7 8 9 10	6.6.4
P2-07	Adaptive mode inertia ratio (standard)	%	0	0~10000	0	1 2 3 4 5 6 7 8 9 10	6.6.4
P2-08	Gain of adaptive mode speed observer (standard)	Hz	20P1/20P2/ 20P4/20P7: 60 >=21P5: 40	10~1000	0	1 2 3 4 5 6 7 8 9 10	<u>6.6.4</u>
P2-12	Maximum Inertia Ratio of Adaptive Mode (Standard)	-	30	1~10000	0	1 2 3 4 5 6 7 8 9 10	6.6.4
P2-15	Inertia Identification and Internal Instruction Auto-tuning Maximum Travel	0.01r	100	1~3000	V	1 2 3 4 5 6 7 8 9 10	6.2.4
P2-17	Maximum Speed of Inertia Identification and Internal Instruction Auto-tuning	rpm	0	0~65535	V	1 2 3 4 5 6 7 8 9 10	6.2.4

IP2-16	Adaptive motor rotor inertia coefficient	-	100	10~1000	0	1 2 3 4 5 6 7 8 9 10	6.2.4
P2-18	Initial inertia ratio of inertia identification	%	500	1~20000	V	1 2 3 4 5 6 7 8 9 10	6.2.4

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P2-19	Adaptive mode bandwidth	%	20P1: 100 20P2, 20P4: 70 >=20P7: 50	1~100	0	1 2 3 4 5 6 7 8 9 10	6.2.4
P2-35	Torque Instruction Filtering Time Constant 1	0.01ms	100	0~65535	V	1 2 3 4 5 6 7 8 9 10	6.5.3
P2-41	Disturbance Torque Compensation Coefficient (Non-adaptive Mode Effective)	%	85	0~100	V	1 2 3 4 5 6 7 8 9 10	6.1.4
P2-47.0	Model Loop Switch 0-OFF 1-ON	-	1	0~f	V	1 2 3 4 5 6 7 8 9 10	6.1.3
P2-49	Model loop gain	0.1Hz	500	10~20000	V	3 4 5 6 7 10	6.5.3
P2-60.0	Active Vibration Suppression Switch 0-OFF 1-ON	-	0	0~1	V	3 4 5 6 7 10	6.4.6
P2-60.1	Active Suppression Auto-tuning Switch 0-Active Vibration Suppression is not Configured in auto-tuning 1- configure the Active Vibration Suppression when auto-tuning	-	1	0~1	√	3 4 5 6 7 10	6.4.6
P2-61	Active Vibration Suppression frequency	0.1Hz	1000	10~20000	√	1 2 3 4 5 6 7 8 9 10	6.5
P2-62	Active Vibration Suppression gain	%	100	1~1000	V	1 2 3 4 5 6 7 8 9 10	<u>6.4.6</u>
P2-63	Active Vibration Suppression damping	%	100	0~300	√	1 2 3 4 5 6 7 8 9 10	6.4.6
P2-64	Filtering time of active vibration suppression 1	-	0	-5000~5000	V	1 2 3 4 5 6 7 8 9 10	<u>6.4.6</u>
P2-65	Filtering time of active vibration suppression 2	-	0	-5000~5000	V	1 2 3 4 5 6 7 8 9 10	6.4.6
P2-66	The second group of active vibration damping	-	0	0~1000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.4.6</u>
P2-67	Second group active vibration suppression frequency	Hz	20000	10~50000	V	1 2 3 4 5 6 7 8 9 10	<u>6.4.6</u>
P2-69.0	Notch filter 1 switch	-	0	0~1	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	6.4.6

P2-69.1	Notch filter 2 switch	-	0	0~1	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.4.6</u>
P2-69.3	Notch filter 3 switch	-	0	0~1	√	1 2 3 4 5 6 7 8 9 10	-
P2-70.0	Notch filter 4 switch	-	0	0~1	V	1 2 3 4 5 6 7 8 9 10	-
P2-70.1	Notch filter 5 switch	-	0	0~1	V	1 2 3 4 5 6 7 8 9 10	-
P2-71	First notch frequency	Hz	5000	50~5000	√	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-72	First notch attenuation	0.1dB	70	50~1000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-73	First notch band width	Hz	0	0~1000	\checkmark	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-74	Second notch frequency	Hz	5000	50~5000	√	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-75	Second notch attenuation	0.1dB	70	50~1000	\checkmark	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-76	Second notch band width	Hz	0	0~1000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-77	Third notch frequency	Hz	5000	50~5000	V	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-78	Third notch attenuation	0.1dB	70	50~1000	√	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-79	Third notch band width	Hz	0	0~1000	\checkmark	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-80	Fourth notch frequency	Hz	5000	50~5000	V	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-81	Fourth notch attenuation	0.1dB	70	50~1000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-82	Fourth notch band width	Hz	0	0~1000	V	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-83	Fifth notch frequency	Hz	5000	50~5000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>
P2-84	Fifth notch attenuation	0.1dB	70	50~1000	V	1 2 3 4 5 6 7 8 9 10	6.7.7
P2-85	Fifth notch band width	Hz	0	0~1000	√	1 2 3 4 5 6 7 8 9 10	<u>6.7.7</u>

P3-XX:

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P3-00	V-REF Function Allocation 0-V-REF as Speed Instruction Input 1-V-REF will be used as input reference value of external speed limit. The actual speed limit depends on the speed limit of external analog quantity. 2-Speed Feedforward	-	0	0~2	0	1 2 4	<u>5.5</u>
P3-01	Analog voltage	0.001V	10000	1500~30000	0	1 2 4	5.4.4

	corresponding to rated speed (5E/5L not						
	support)						
P3-02	Analog voltage speed filter (5E/5L not support)	0.01ms	200	0~10000	$\sqrt{}$	1 2 4	<u>5.4.4</u>
P3-03	Speed instruction input dead zone voltage	0.001v	0	0~500	√	1 2 4	5.4.4
	(5E/5L not support)						
P3-04	V-REF analog speed direction(5E/5L not support)	-	0	0~1	V	1 2 4	5.4.4
P3-05	Preset speed 1	rpm	0	-9999~9999	√	3	5.4.2
P3-06	Preset speed 2	rpm	0	-9999~9999	√	3	5.4.2
P3-07	Preset speed 3	rpm	0	-9999~9999	√	3	5.4.2
P3-09	Acceleration time	ms	Version 3720 and before: 0 Version 3730: 200	0~65535	0	3 4 7	5.4.1.1
P3-10	Deceleration time	ms	Version 3720 and before: 0 Version 3730: 200	0~65535	0	3 4 7	<u>5.4.1.1</u>
P3-12	Zero-speed clamping mode	ı	0	0~3	0	3 4 7	5.4.1.2
P3-13	Zero-speed clamping speed	rpm	10	0~300	0	3 4 7	<u>5.4.1.2</u>
P3-14	Forward Maximum Speed Instruction Limit	rpm	4000	0~10000	0	1 2 3 4 5 6 7 10	<u>5.8.3</u>
P3-15	Reverse Maximum Speed Instruction Limit	rpm	4000	0~10000	0	1 2 3 4 5 6 7 10	5.8.3
P3-16	Internal Forward Speed Limitation in Torque Control	rpm	2000	5~10000	V	1 2	<u>5.5.1.2</u>
P3-17	Internal Reverse Speed Limitation in Torque Control	rpm	2000	5~10000	V	1 2	<u>5.5.1.2</u>
P3-18	Jogging speed	rpm	100	0~1000	0	1 2 3 4 5 6 7 10	4.4.2
P3-19	forward warning speed	rpm	3000	0~10000	0	1 2 3 4 5 6 7 10	<u>5.8.5.4</u>
P3-20	reverse warning speed	rpm	3000	0~10000	0	1 2 3 4 5 6 7 10	<u>5.8.5.4</u>
P3-21	forward alarming speed	rpm	4000	0~10000	0	1 2 3 4 5 6 7 10	-
P3-22	reverse alarming speed	rpm	4000	0~10000	0	1 2 3 4 5 6 7 10	-
P3-23	T-REF Function Allocation 0 - Input as Torque Instruction 1 - As a necessary	-	0	0~2	0	2 3 4 5 6 7 10	<u>5.7.2</u>

condition for limiting			
input of external			
torque, the minimum			
value is valid			
compared with			
P3-28/P3-29.			
2-Torque Feedforward			

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P3-24	analog value corresponding to rated torque	0.001V	10000	1500~30000	0	2 3 4 5 6 7 10	5.5.3
P3-25	Analog Voltage Torque Filtering Time	0.01ms	200	0~10000	V	2 3 4 5 6 7 10	<u>5.5.3</u>
P3-26	Torque instruction input dead-zone voltage	0.001V	0	0~500	$\sqrt{}$	2 3 4 5 6 7 10	<u>5.5.3</u>
P3-27	Analog Torque Forward Direction 0-forward 1-reverse	-	0	0~1	0	2 3 4 5 6 7 10	-
P3-28	Internal forward torque limit	%	300	0~1000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>5.8.2</u>
P3-29	Internal reverse torque limit	%	300	0~1000	√	1 2 3 4 5 6 7 8 9 10	5.8.2
P3-30	external forward torque limit	%	300	0~1000	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.2</u>
P3-31	external reverse torque limit	%	300	0~1000	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.2</u>
P3-32	Brake torque	1%	300	0~1000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>5.2.4</u>
P3-33	Preset torque	%	0	-1000~1000	$\sqrt{}$	1	<u>5.5.1.1</u>
P3-45	Torque mode switching delay	ms	40	0~9999	√	1 2	-

P4-XX:

Parameter	Function	Unit	Default	Range	Effective	Suitable	Reference
1 aranneter	Function	Omt	value	Range	Lifective	mode	chapter
P4-00.0	Z phase signal numbers The Z phase signal numbers after leaving the limit switch (note: stop when N+1 Z phase signal reached)	pcs	2	0~f	0	5 6 10	5.3.1.8
P4-00.1	Search the origin function 0-OFF 1-ON	1	0	0~1	0	5 6 10	5.3.1.8
	return to zero overrun prohibition 0-not prohibit 1-prohibit	-	0	0~1	0	5 6 10	5.3.1.8
P4-01	Speed of hitting the proximity switch	rpm	600	0~65535	0	5 6 10	<u>5.3.1.8</u>
P4-02	Speed of leaving proximity switch	rpm	100	0~65535	0	5 6 10	<u>5.3.1.8</u>
P4-03.0	Internal Location Given Mode Sets Location Mode 0-relative positioning 1-Absolute positioning	-	0	0~1	0	5	5.3.3.1

Parameter	Function	Unit	Default	Range	Effective	Suitable	Reference
Parameter	runction	UIII	value	Kange	Effective	mode	chapter
P4-03.1	Internal Position-Given Mode Sets Step Change Mode 0-step-changing when signal is ON, recyclable 1-change step at signal rising edge, single step execution 2-starting at Signal rising edge, sequential execution of all, no cycle 3-set segment no. through communication 4-/CHSTP dual edge triggerring 5-terminal/PREFA(P5-57), /PREFB(P5-58), /PREFC(P5-59) select the segment no., range 1~3 6-terminal/PREFA (P5-57), /PREFB(P5-58), /PREFC(P5-59) select segment no., range 1~8	-	0	0~6	0	6	5.3.3.1
$D_4 \cap 3 \cap 3$	Internal position mode sets waiting mode 0-wait positioning completion 1-not wait positioning completion	-	0	0~1	0	5	5.3.3.1
P4-04	Valid segment number	-	0	0~35	0	5	<u>5.3.3.2</u>
P4-08	Internal position mode start segment No	-	1	0~35	0	5	<u>5.3.3.3</u>
P4-10∼ P4-11	First segment pulse	1pul	0	-32768999 9~327679 999	V	5	<u>5.4.3</u>
P4-12	First segment speed	0.1rpm	0	0~65535	$\sqrt{}$	5	<u>5.4.3</u>
P4-13	First segment acceleration time	1ms	0	0~65535	√	5	<u>5.4.3</u>
P4-14	First segment deceleration time	1ms	0	0~65535	√	5	<u>5.4.3</u>
P4-16	Adjusting time	1ms	0	0~65535	√	5	<u>5.4.3</u>
	segment 1 to 35 pulse parameters (n is segment number)	-	-	-	V	5	<u>5.4.3</u>

P5-XX:

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P5-00	Positioning completion width/COIN	Command unit	11	1~65535	V	5 6 10	5.3.1.2
P5-01	Location Completion Detection Mode	-	0	0~3	\checkmark	5 6 10	5.3.1.2
P5-02	Location completion retention time	ms	0	0~65535	V	5 6 10	5.3.1.2
P5-03	Rotation Detection Speed	rpm	50	0~10000	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	5.8.5.2
P5-04	Same speed detection speed	rpm	50	0~10000	√	1 2 3 4 5 6 7 8 9 10	5.8.5.3
P5-05	Reached detection speed	Rpm	1000	0~10000	√	1 2 3 4 5 6 7	<u>5.4.1.3</u>

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
						8 9 10	
P5-06	Positioning near output width	Command unit	50	1~65535	V	5 6 10	5.3.1.3
P5-07	Servo OFF delay time	Ms	500	-500~999 9	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.5</u>
P5-08	Brake instruction output speed	Rpm	30	20~10000	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.5</u>
P5-09	Brake instruction waiting time	Ms	500	0~65535	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.5</u>
P5-10	user-defined output 1 trigger condition	-	0	0~ffff	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-11	Set a value that compares with the trigger condition of custom output 1	Relating to trigger condition	0	-9999~99 99	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-12	Select custom output 1 mode	-	0	0~3	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-13	Setting custom output 1 hysteresis	Relating to trigger condition	0	0~65535	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-14	Custom Output 2 Trigger Condition	-	0	0~ffff	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-15	Set a value that compares with the trigger condition of custom output 2	Relating to trigger condition	0	-9999~99 99	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-16	Select custom output 2 mode	-	0	0~3	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-17	Setting custom output 2 hysteresis	Relating to trigger condition	0	0~65535	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-18	SI filter time multiple	-	1	0~10000	√	1 2 3 4 5 6 7 8 9 10	5.8.4.1
P5-19	Z phase output maintain time	ms	2	1~65535	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.6</u>
P5-20.0~1	/S-ON: servo signal 00: Set the signal to be invalid all the time. 01: Input positive signal from SI1 terminal. 02: Input positive signal from SI2 terminal. 03: Input positive signal from SI3 terminal. 04: Input positive signal from SI4 terminal. 10: Set the signal to always be "valid". 11: Inverse signal is input from SI1 terminal. 12: Inverse signal is input	-	01	0~ff	√	1 2 3 4 5 6 7 8 9 10	<u>5.2.2</u>

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
	from SI2 terminal. 13: Inverse signal is input from SI3 terminal. 14: Inverse signal is input from SI4 terminal.						
P5-20.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.4.1</u>
P5-21.0~1	/P-CON proportion action instruction	-	00	0~ff	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.6.1</u>
P5-21.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.4.1</u>
P5-22.0~1	/P-OT: Forbidden forward driving	-	03	0~ff	√	1 2 3 4 5 6 7 8 9 10	<u>5.2.4</u>
P5-22.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.4.1</u>
P5-23.0~1	/N-OT: forbidden reverse driving	-	04	0~ff	√	1 2 3 4 5 6 7 8 9 10	<u>5.2.4</u>
P5-23.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.4.1</u>
P5-24.0~1	/ALM-RST: alarm clear	-	02	0~ff	√	1 2 3 4 5 6 7 8 9 10	5.8.6.2
P5-24.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	5.8.4.1
P5-25.0~1	/P-CL: External Torque Limitation at Forward Rotation Side	-	00	0~ff	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.2</u>
P5-25.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	5.8.4.1
P5-26.0~1	/N-CL: External Torque Limitation at Reverse Rotation Side	-	00	0~ff	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.2</u>
P5-26.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	5.8.4.1
P5-27.0~1	/SPD-D: Internal Speed Direction Selection	-	00	0~ff	√	1 2 3 4 7	5.4.2
P5-27.2	SI terminal filtering time	ms	0	0~f	V	1 2 3 4 7	5.8.4.1
P5-28.0~1	/SPD-A: Internal Setting Speed Selection	-	00	0~ff	√	3 5	<u>5.4.2</u>
P5-28.2	SI terminal filtering time	ms	0	0~f	√	3 5	5.8.4.1
P5-29.0~1	/SPD-B: Internal Setting Speed Selection	-	00	0~ff	√	3 5	<u>5.4.2</u>
P5-29.2	SI terminal filtering time	ms	0	0~f	V	3 5	5.8.4.1
P5-30.0~1	/C-SEL: control mode selection	-	00	0~ff	√	1 2 3 4 5 6 7 8 9 10	<u>5.1.2</u>
P5-30.2	SI terminal filtering time	ms	0	0~f	√	1 2 3 4 5 6 7 8 9 10	<u>5.8.4.1</u>
P5-31.0~1	/ZCLAMP: zero position clamping	-	00	0~ff	√	3 4 7	5.4.1.2
P5-31.2	SI terminal filtering time	ms	0	0~f	√	3 4 7	5.8.4.1
P5-32.0~1	/INHIBIT: Instruction pulse prohibition	-	00	0~ff	√ √	5 6 7	5.3.1.4
P5-32.2	SI terminal filtering time	ms	0	0~f	√	5 6 7	5.8.4.1
P5-34.0~1	/CLR: pulse offset clear	-	00	0~ff	V	5 6 10	5.3.1.5
P5-34.2	SI terminal filtering time	ms	0	0~f	√	5 6 10	5.8.4.1

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P5-35.0~1	/CHGSTP: internal position mode change step signal	-	00	0~ff	V	5	<u>5.3.3</u>
P5-35.2	SI terminal filtering time	ms	0	0~f	√	5	<u>5.8.4.1</u>
P5-36.0~1	/I-SEL: inertia ratio switching	-	00	0~ff	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>6.6.7</u>
P5-36.2	SI terminal filtering time	ms	0	0~f	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.4.1</u>
P5-37	/COIN_HD: Location Completion Maintenance 00: No output to terminal 01: Output positive signal from SO1 terminal 02: Output positive signal from SO2 terminal 03: Output positive signal from SO3 terminal 11: Output reverse signal from SO1 terminal 12: Output reverse signal from SO2 terminal 13: Output reverse signal from SO2 terminal. 13: Output reverse Signal from SO3 terminal	-	0000	0~ffff	√	5 6 10	5.3.1.2
P5-38	/COIN: positioning completion	-	0001	0~ffff	$\sqrt{}$	5 6 10	<u>5.3.1.2</u>
P5-39	/V-CMP: same speed detection	-	0000	0~ffff	√	3 4 7	5.8.5.3
P5-40	/TGON: rotation detection	-	0000	0~ffff	√	1 2 3 4 5 6 7 8 9 10	5.8.5.2
P5-41	/S-RDY: ready	-	0000	0~ffff	√	1 2 3 4 5 6 7 8 9 10	5.8.5.1
P5-42	/CLT: torque limit	-	0000	0~ffff	√	1 2 3 4 5 6 7 8 9 10	5.8.2
P5-43	/VLT: speed limit detection	-	0000	0~ffff	V	1 2	<u>5.5.1.3</u>
P5-44	/BK: brake locking	-	0000	0~ffff	0	1 2 3 4 5 6 7 8 9 10	<u>5.2.5</u>
P5-45	/WARN: warning	-	0000	0~ffff	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>5.12.2</u>
P5-46	/NEAR: near	-	0000	0~ffff	V	5 6 10	<u>5.3.7</u>
P5-47	/ALM: alarm	-	0002	0~ffff	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>5.2.6</u>
P5-48	/Z: encoder Z phase signal output	-	0000	0~ffff	√	1 2 3 4 5 6 7 8 9 10	<u>5.12.5</u>
P5-49	/XNETERR: Xnet error signal	-	0	0~ffff	$\sqrt{}$	10	-
P5-50	/MRUN: internal position mode motion starting signal	-	0000	0~ffff	V	5	5.3.3.6
P5-51	/V-RDY: speed reached	-	0000	0~ffff	√	3 4 7	<u>5.4.1.3</u>
P5-52	/USER1: user-defined output	-	0000	0~ffff	V	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>
P5-53	/USER2: user-defined output 2	-	0000	0~ffff	$\sqrt{}$	1 2 3 4 5 6 7 8 9 10	<u>5.8.5.7</u>

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P5-57.0~1	/PREFA: intenral position selection signal A	-	00	0~ff	V	5	5.3.3.1
P5-57.2	SI terminal filtering time	ms	0	0~f	$\sqrt{}$	5	<u>5.8.4.1</u>
P5-58.0~1	/PREFB: intenral position selection signal B	-	00	0~ff	V	5	5.3.3.1
P5-58.2	SI terminal filtering time	ms	0	0~f	$\sqrt{}$	5	<u>5.8.4.1</u>
P5-59.0~1	/PREFC: internal position selection signal C	-	00	0~ff	V	5	5.3.3.1
P5-59.2	SI terminal filtering time	ms	0	f~f	$\sqrt{}$	5	<u>5.8.4.1</u>
P5-61.0~1	/TRAJ-START: Motion start trigger signal	-	00	0~ff	√	5	
P5-61.2	SI terminal filtering time	ms	0	0~f	√	5	
P5-70	/SRDY: Output Conditions Selection 0: This terminal is turned on after initialization of the driver is completed 1: This terminal will not turn on until enabled.	-	0	0~1	V	1 2 3 4 5 6 7 8 9 10	5.8.5.1
P5-71	Function Selection of Directional Terminal of Pulse Speed Mode	-	0	0~1	0	7	5.4.3.4

P6-XX:

Parameter	Function	Unit	Default value	Range	Effective	Suitable mode	Reference chapter
P6 05	Adaptive Mode Speed Loop Gain (Large Inertia)	0.1Hz	200	1~65535	0	1 2 3 4 5 6 7 8 9	<u>6.2.4</u>
P6-07	Adaptive mode inertia ratio (Large inertia)	%	50	0~10000	0	1 2 3 4 5 6 7 8 9	<u>6.2.4</u>
P6-08	Gain of adaptive mode speed observer (large inertia)	Hz	40	10~1000	0	1 2 3 4 5 6 7 8 9 10	6.2.4
P6-12	Maximum Inertia Ratio of Adaptive Mode (Large Inertia)	-	50	1~10000	0	1 2 3 4 5 6 7 8 9 10	6.2.4

Appendix 2. UX-XX monitoring parameters

U0-XX:

Code	Con	Unit	
U0-59	Absolute encoder present position	$(0000\sim65536)*2^{32}$	Emandam mulan
U0-60	feedback high 32-bit (0000~65536)		Encoder pulse
U0-61	Xnet communication error amounts		
U0-62	Xnet Communication Waiting Synch	ronization Frame State Interference	
U0-63	Xnet Communication Waiting f	or Synchronization Frame State	
00-03	Receiving Data Frame		
U0-64	Xnet Communication Waiting Data l	Frame State Interference	
U0-65	Xnet Communication Waiting f	For Data Frame Status Receive	
00-63	Synchronized Frame		
U0-66	Xnet communication CRC parity error		
U0-67	Xnet communication UART error		
U0-68	Xnet communication timeout counting		
U0-69	Communication encoder timeout cou		
U0-88	Motor code reading status		
U0-89	Real-time speed feedback (displaying	0.01rpm	
U0-91	Multi-turn absolute motor circles		
U0-94	(0000~65536) *1		
U0-95	Encoder feedback position after (0000~65536) *2 ¹⁶		Encoder pulses
U0-96	calibration	Encoder pulses	
U0-97		(0000~65536)	

U1-XX:

Code	Contents	Unit
U1-00	present alarm code	
U1-01	present warning code	
U1-02	U phase current when alarming	0.01A
U1-03	V phase current when alarming	0.01A
U1-04	bus voltage when alarming	V
U1-05	IGBT temperature when alarming	°C
U1-06	torque current when alarming	0.01A
U1-07	excitation current when alarming	A
U1-08	position offset when alarming	Instruction pulse
U1-09	speed when alarming	rpm
U1-10	Seconds(low 16-bit) when alarming, cumulated seconds from the first time power-on	S
U1-11	Seconds(high 16-bit) when alarming, cumulated seconds from the first time power-on	S
U1-12	this time running error numbers, counting after power on this time	
U1-13	this time operation warning numbers, counting after power on this time	
U1-14	historical alarm amounts	
U1-15	historical warning amounts	
U1-16	Recent 2nd alarm code	
U1-17	Recent 3rd alarm code	
U1-18	Recent 4th alarm code	
U1-19	Recent 5th alarm code	
U1-20	Recent 6th alarm code	
U1-21	Recent 2nd warning code	
U1-22	Recent 3rd warning code	
U1-23	Recent 4th warning code	,

U1-24	Recent 5th warning code	
U1-25	Recent 6th warning code	
U1-26	Recent 7th warning code	

U2-XX:

Code	Contents	Unit
U2-00	Power on times	
U2-01	series	
U2-02	Model (low 16-bit)	
U2-03	Model (high 16-bit)	
U2-04	out of factory date: year	
U2-05	out of factory date: month	
U2-06	out of factory date: day	
U2-07	Firmware version	
U2-08	Hardware version	
U2-09	Total running time (from the first time power on)	hour
U2-10	Total running time (from the first time power on)	minute
U2-11	Total running time (from the first time power on)	second
U2-12	This time running time (from this time power on)	hour
U2-13	This time running time (from this time power on)	minute
U2-14	This time running time (from this time power on)	second
U2-15	Average output power (from the first time enabled, average power in the process of enabling)	1W
U2-16	Average thermal power (from the first time enabled, average power in the process of enabling)	1W
U2-17	Average bus capacitor filter power (from the first time power on, average power in the process of power on)	1W
U2-20	Device serial no.: low 16-bit	
U2-21	Device serial no.: high 16-bit	
U2-22	Firmware generation date: year	
U2-23	Firmware generation date: month/day	
U2-24	Firmware generation date: hour/minute	

U3-XX:

Code	Contents	Unit	
U3-00	Motor code (including thermal power parameters) read automatically by driver	-	
	, , , , , , , , , , , , , , , , , , ,		
U3-01	Motor version -		
U3-02	Encoder version	-	
U3-70	Automatically read the motor code of the encoder in the motor parameters (only related to the motor code)		

U4-XX:

Code	Contents	Unit
U4-10	Resonance frequency detected by fast FFT	Hz

Appendix 3. FX-XX auxiliary function parameters

Code	Contents	Effective	Refrence chapter
F0-00	Clear the alarm	Servo OFF	4.4.1
F0-01	Restore to out of factory settings	Servo OFF	4.4.1
F0-02	clear the position offset	Servo OFF	4.4.1
F0-07	Panel inertia identification	Servo OFF	6.3.4
F0-08	Panel external command auto-tuning	Servo OFF	<u>6.5.5</u>
F0-09	Panel internal command auto-tuning	Servo OFF	<u>6.5.4</u>
F0-10	Panel vibration suppression 1	Servo OFF	<u>6.7.4</u>
F0-11	Panel vibration suppression 2	Servo OFF	<u>6.7.4</u>
F0-12	Panel vibration suppression (Quick FFT)	Servo OFF	<u>6.7.6</u>
F1-00	Jog run	Servo OFF	4.4.2
F1-01	Test run	Servo OFF	4.4.2
F1-02	Current Sampling Zero-correction	Servo OFF	4.4.2
F1-03	Vref (speed analog) zero-correction	Servo OFF	4.4.2
F1-04	Tref (torque analog) zero-correction	Servo OFF	4.4.2
F1-05	software enable	Servo OFF	4.4.2
F1-06	Absolute encoder position clear	Servo OFF	<u>5.11.5</u>

Appendix 4. Modbus address list

Parameter	Modbus address	Notes
P0-00~P0-xx	0x0000~0x0063	Modbus address is added 1 in turn from 0x0000, for
10-00-10-33	0x0000~0x0003	example, Modbus address of P0-23 is 0x0017
P1-00~P1-xx	0x0100~0x0163	Modbus address is added 1 in turn from 0x0100, for
11 00 11 44	0A0100 0A0103	example, Modbus address of P1-10 is 0x010A
P2-15~P2-xx	0x020F~0x0263	Modbus address is added 1 in turn from 0x020F, for
12 13 12 AA	0X0201 0X0203	example, Modbus address of P2-16 is 0x0210
P3-00~P3-xx	0x0300~0x0363	Modbus address is added 1 in turn from 0x0300, for
13 00 13 AX	0A0300 0A0303	example, Modbus address of P3-13 is 0x030D
P4-00~P4-xx	0x0400~0x0463	Modbus address is added 1 in turn from 0x0400, for
1100 11 AX	0A0 100 0A0 103	example, Modbus address of P4-25 is 0x0419
P5-00~P5-xx	0x0500~0x0563	Modbus address is added 1 in turn from 0x0500, for
13 00 13 AX	0A0300 0A0303	example, Modbus address of P5-20 is 0x0514
P6-00~P6-xx	0x0600~0x0663	Modbus address is added 1 in turn from 0x0600, for
10 00 10 AX	0A0000 0A0003	example, Modbus address of P6-05 is 0x0605
P7-00~P7-xx	0x0700~0x0763	Modbus address is added 1 in turn from 0x0700, for
17 00 17 AA	0A0700 0A0703	example, Modbus address of P7-11 is 0x070B
U0-00~U0-xx	0x1000~0x1063	Modbus address is added 1 in turn from 0x1000, for
CO OO CO AA	0A1000 0A1003	example, Modbus address of U0-05 is 0x1005
U1-00~U1-xx	0x1100~0x1163	Modbus address is added 1 in turn from 0x1100, for
OT OU OT AX	0X1100 0X1103	example, Modbus address of U1-14 is 0x110E
U2-00~U2-xx	0x1200~0x1263	Modbus address is added 1 in turn from 0x1200, for
02-00~02-XX	0X1200*0X1203	example, Modbus address of U2-08 is 0x1208

Parameter	Modbus address	Notes
U4-00~U4-xx	0x1400~0x1463	Modbus address is added 1 in turn from 0x1400, for example, Modbus address of U4-11 is 0x120B

F0-00~F0-xx	0x2000~0x2063	Modbus address is added 1 in turn from 0x2000, for example, Modbus address of F0-01 is 0x2001
F1-00~F1-xx	0x2100~0x2163	Modbus address is added 1 in turn from 0x2100, for example, Modbus address of F1-03 is 0x2103

Note: if the following parameters are not involved in the Modbus address table, follow the address rules in the table above.

■ Group P parameter address

Parameter	Modbus address		Parameter	Modbus address	
1 arameter	Hex	Decimal	Tarameter	Hex	Decimal
P0-00	0x0000	0	P0-17	0x0011	17
P0-01	0x0001	1	P0-18	0x0012	18
P0-02	0x0002	2	P0-19	0x0013	19
P0-03	0x0003	3	P0-20	0x0014	20
P0-04	0x0004	4	P0-21	0x0015	21
P0-05	0x0005	5	P0-22	0x0016	22
P0-06	0x0006	6	P0-23	0x0017	23
P0-07	0x0007	7	P0-24	0x0018	24
P0-08	0x0008	8	P0-25	0x0019	25
P0-09	0x0009	9	P0-26	0x001A	26
P0-10	0x000A	10	P0-27	0x001B	27
P0-11	0x000B	11	P0-28	0x001C	28
P0-12	0x000C	12	P0-29	0x001D	29
P0-13	0x000D	13	P0-30	0x001E	30
P0-14	0x000E	14	P0-31	0x001F	31
P0-15	0x000F	15	P0-32	0x0020	32
P0-16	0x0010	16	P0-33	0x0021	33

Parameter	Modbus address		Parameter	Modbus address	
rarameter	Hex	Decimal	rafametei	Hex	Decimal
P1-00	0x0100	256	P1-15	0x010F	271
P1-01	0x0101	257	P1-16	0x0110	272
P1-02	0x0102	258	P1-17	0x0111	273
P1-03	0x0103	259	P1-18	0x0112	274
P1-04	0x0104	260	P1-19	0x0113	275
P1-05	0x0105	261	P1-20	0x0114	276
P1-06	0x0106	262	P1-21	0x0115	277
P1-07	0x0107	263	P1-22	0x0116	278
P1-08	0x0108	264	P1-23	0x0117	279
P1-09	0x0109	265	P1-24	0x0118	280
P1-10	0x010A	266	P1-25	0x0119	281
P1-11	0x010B	267	P1-26	0x011A	282
P1-12	0x010C	268	P1-27	0x011B	283
P1-13	0x010D	269	P1-28	0x011C	284
P1-14	0x010E	270			

Parameter	Modbus address		Domomoton	Modbus address	
	Hex	Decimal	Parameter	Hex	Decimal
P2-00	0x0200	512	P2-15	0x20F	527
P2-01	0x0201	513	P2-16	0x210	528

Parameter	Modbus address		Parameter	Modbus address	
rarameter	Hex	Decimal	rarameter	Hex	Decimal
P3-00	0x0300	768	P3-19	0x0313	787
P3-01	0x0301	769	P3-20	0x0314	788
P3-02	0x0302	770	P3-21	0x0315	789
P3-03	0x0303	771	P3-22	0x0316	790
P3-04	0x0304	772	P3-23	0x0317	791
P3-05	0x0305	773	P3-24	0x0318	792
P3-06	0x0306	774	P3-25	0x0319	793
P3-07	0x0307	775	P3-26	0x031A	794
P3-08	0x0308	776	P3-27	0x031B	795
P3-09	0x0309	777	P3-28	0x031C	796
P3-10	0x030A	778	P3-29	0x031D	797
P3-11	0x030B	779	P3-30	0x031E	798
P3-12	0x030C	780	P3-31	0x031F	799
P3-13	0x030D	781	P3-32	0x0320	800
P3-14	0x030E	782	P3-33	0x0321	801
P3-15	0x030F	783	P3-34	0x0322	802
P3-16	0x0310	784	P3-35	0x0323	803
P3-17	0x0311	785	P3-36	0x0324	804
P3-18	0x0312	786			

Parameter	Modbus address		Parameter	Modbus address	
Tarameter	Hex	Decimal Hex	Hex	Decimal	
P4-00	0x0400	1024	P4-15	0x040F	1039
P4-01	0x0401	1025	P4-16	0x0410	1040

Parameter	Modbus address		Parameter	Modbus address	
Farameter	Hex	Decimal	rarameter	Hex	Decimal
P5-00	0x0500	1280	P5-27	0x051B	1307
P5-01	0x0501	1281	P5-28	0x051C	1308
P5-02	0x0502	1282	P5-29	0x051D	1309
P5-03	0x0503	1283	P5-30	0x051E	1310
P5-04	0x0504	1284	P5-31	0x051F	1311
P5-05	0x0505	1285	P5-32	0x0520	1312
P5-06	0x0506	1286	P5-33	0x0521	1313
P5-07	0x0507	1287	P5-34	0x0522	1314
P5-08	0x0508	1288	P5-35	0x0523	1315
P5-09	0x0509	1289	P5-36	0x0524	1316
P5-10	0x050A	1290	P5-37	0x0525	1317
P5-11	0x050B	1291	P5-38	0x0526	1318
P5-12	0x050C	1292	P5-39	0x0527	1319
P5-13	0x050D	1293	P5-40	0x0528	1320
P5-14	0x050E	1294	P5-41	0x0529	1321
P5-15	0x050F	1295	P5-42	0x052A	1322

Parameter	Modbus address		Parameter	Modbus address	
Farameter	Hex	Decimal	rarameter	Hex	Decimal
P5-16	0x0510	1296	P5-43	0x052B	1323
P5-17	0x0511	1297	P5-44	0x052C	1324
P5-18	0x0512	1298	P5-45	0x052D	1325
P5-19	0x0513	1299	P5-46	0x052E	1326
P5-20	0x0514	1300	P5-47	0x052F	1327
P5-21	0x0515	1301	P5-48	0x0530	1328
P5-22	0x0516	1302	P5-49	0x0531	1329
P5-23	0x0517	1303	P5-50	0x0532	1330
P5-24	0x0518	1304	P5-51	0x0533	1331
P5-25	0x0519	1305	P5-52	0x0534	1332
P5-26	0x051A	1306	P5-53	0x0535	1333

Parameter	Modbus address		Parameter	Modbus address	
	Hex	Decimal	Parameter	Hex	Decimal
P6-00	0x0600	1536	P6-10	0x060A	1546
P6-01	0x0601	1537	P6-11	0x060B	1547

Parameter	Modbus address		Parameter	Modbus address	
	Hex	Decimal	Parameter	Hex	Decimal
P7-00	0x0700	1792	P7-10	0x070A	1802
P7-01	0x0701	1793			

■ Monitoring status address of group U

Parameter	Modbus address		Parameter	Modbus address	
Parameter	Hex	Decimal	Parameter	Hex	Decimal
U0-00	0x1000	4096	U0-28	0x101C	4124
U0-01	0x1001	4097	U0-29	0x101D	4125
U0-02	0x1002	4098	U0-30	0x101E	4126
U0-03	0x1003	4099	U0-31	0x101F	4127
U0-04	0x1004	4100	U0-32	0x1020	4128
U0-05	0x1005	4101	U0-33	0x1021	4129
U0-06	0x1006	4102	U0-34	0x1022	4130
U0-07	0x1007	4103	U0-35	0x1023	4131
U0-08	0x1008	4104	U0-36	0x1024	4132
U0-09	0x1009	4105	U0-37	0x1025	4133
U0-10	0x100A	4106	U0-38	0x1026	4134
U0-11	0x100B	4107	U0-39	0x1027	4135
U0-12	0x100C	4108	U0-40	0x1028	4136
U0-13	0x100D	4109	U0-41	0x1029	4137
U0-14	0x100E	4110	U0-42	0x102A	4138
U0-15	0x100F	4111	U0-43	0x102B	4139
U0-16	0x1010	4112	U0-44	0x102C	4140
U0-17	0x1011	4113	U0-45	0x102D	4141
U0-18	0x1012	4114	U0-46	0x102E	4142
U0-19	0x1013	4115	U0-47	0x102F	4143
U0-20	0x1014	4116	U0-48	0x1030	4144

Parameter	Modbus address		Parameter	Modbus address	
rarameter	Hex	Decimal	r arameter	Hex	Decimal
U0-21	0x1015	4117	U0-49	0x1031	4145
U0-22	0x1016	4118	U0-50	0x1032	4146
U0-23	0x1017	4119	U0-51	0x1033	4147
U0-24	0x1018	4120	U0-52	0x1034	4148
U0-25	0x1019	4121	U0-53	0x1035	4149
U0-26	0x101A	4122	U0-57	0x1039	4153
U0-27	0x101B	4123	U0-58	0x103A	4154

Parameter	Modbus address		Parameter	Modbus address	
Farameter	Hex	Decimal	Parameter	Hex	Decimal
U1-00	0x1100	4352	U2-00	0x1200	4608
U1-01	0x1101	4353	U2-01	0x1201	4609
U1-02	0x1102	4354	U2-02	0x1202	4610
U1-03	0x1103	4355	U2-03	0x1203	4611
U1-04	0x1104	4356	U2-04	0x1204	4612
U1-05	0x1105	4357	U2-05	0x1205	4613
U1-06	0x1106	4358	U2-06	0x1206	4614
U1-07	0x1107	4359	U2-07	0x1207	4615
U1-08	0x1108	4360	U2-08	0x1208	4616
U1-09	0x1109	4361	U2-09	0x1209	4617
U1-10	0x110A	4362	U2-10	0x120A	4618
U1-11	0x110B	4363	U2-11	0x120B	4619
U1-12	0x110C	4364	U2-12	0x120C	4620
U1-13	0x110D	4365	U2-13	0x120D	4621
U1-14	0x110E	4366	U2-14	0x120E	4622
U1-15	0x110F	4367	U2-15	0x120F	4623
U1-16	0x1110	4368	U2-16	0x1210	4624
U1-17	0x1111	4369	U2-17	0x1211	4625
U1-18	0x1112	4370	U2-20	0x1214	4628
U1-19	0x1113	4371	U4-11	0x140B	5131
U1-20	0x1114	4372	U4-12	0x140C	5132
U1-21	0x1115	4373	U4-13	0x140D	5133
U1-22	0x1116	4374	U4-14	0x140E	5134
U1-23	0x1117	4375	U4-15	0x140F	5135
U1-24	0x1118	4376			
U1-25	0x1119	4377			

Parameter	Modbus address		Parameter	Modbus address	
	Hex	Decimal	1 arameter	Hex	Decimal
F0-00	0x2000	8192	F1-00	0x2100	8448
F0-01	0x2001	8193	F1-01	0x2101	8449
F0-02	0x2002	8194	F1-02	0x2102	8450
F2-09	0x2209	8713	F1-03	0x2103	8451
			F1-04	0x2104	8452
			F1-05	0x2105	8453
			F1-06	0x2106	8454

Appendix 5. Q&A

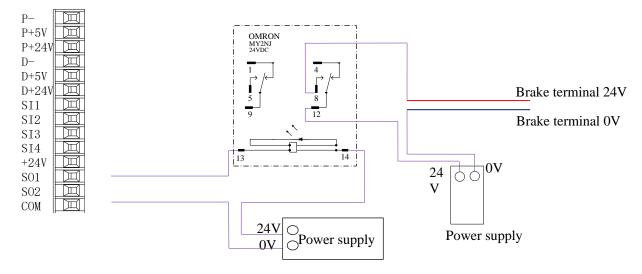
Q1: What is BB and run on the panel?

- 1. BB standby state, without enabling, the motor is in the state of power failure.
- 2. Run running state, with enabling, the motor is in the power on state.

Q2: How to check and set the parameters? Refer to chapter 4.6.

Q3: How to change the parameters in enabled status?

P5-20=0000, enabling is invalid, P5-20=0010, enabling when power on, no need to power on again. The default value is 0001, which means input signal from SI1, SI1 connects to low voltage, +24V connects to high voltage (refer to chapter 3.2.2)


Q4: How to restore out of factory settings? P5-20=0000 enabling is invalid, F0-01=1.

Q5: Which model supports bus mode?

DS5E series supports XNET communication (max 20-axis)

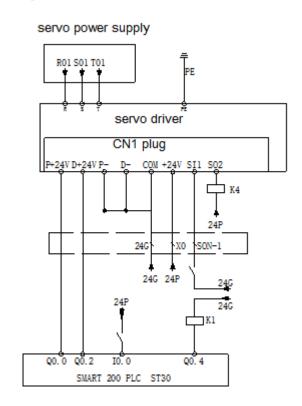
DS5C series supports EtherCAT communication (max 32-axis)

Q6: How to wiring for brake motor? How to modify parameters for slight slip of brake motor after power failure?

- 1. P5-44 defines the terminal of the brake output signal. As shown in the figure above, the SO1 controls brake, that is, P5-44 = 0001.
- 2. Extend the delay time of servo OFF P5-07 (default 500ms), and the waiting time of braking instruction P5-09 is set to 0, which can be responded.

Q7: The initial direction is not what I want. How can I change it through a servo driver? Change the initial direction by modifying P0-05, set the value to 0 or 1, and take effect after re-energizing. (For mode 2, 4, 6, 7 only). If the internal speed mode (mode 3) is used, the positive and negative values of the speed setting can be changed.

Q8: How do the two modes switch to each other?


Both P0-01 main mode and P0-02 sub-mode set the required mode. P5-30=0002 and SI2 are defined as mode switching terminals. When the SI2 terminal has no signal, it runs according to the set mode in the main mode P0-01. When the SI2 terminal has signal input, it runs according to the set mode in the sub-mode P0-02.

Note: SI2 terminal signal can be switched only if it is a constant ON signal.

Q9: What is the connection mode between PLC and servo?

1. NPN low-level output PLC: Y0 pulse connects P-, Y1 direction connects D-, +24V connects P+24, D+24. (Xinje PLC as an example)

PNP high-level output PLC: Q0.0 pulse connects P+24, Q0.2 direction connects D+24, 0V connects P-, D-. (Siemens PLC as an example) as follows:

Q10: What is the external connection method and parameter setting of regenerative resistance?

There are P+, D, C terminals on the servo interface. There are short connectors between P+ and C (using built-in resistor). When the built-in resistor specifications are insufficient, the external resistor should be replaced. The specifications of the external regenerative resistor please refer to chapter 1.4.1.

- (1) P+, D, C interface model: Remove the short joint between P+, D, and connect the external regenerative resistance to P+, C.
- (2) P+, PB interface model: connect external regenerative resistance to P+, PB.
- (3) Version number parameter U2-07 < 3700, set P0-24 = 1, P0-25 = power value, P0-26 = resistance value.
- (4) Version number parameter $U2-07 \ge 3700$, P0-24 need not be set, P0-25 = power value, P0-26 = resistance value.

Note: Before 3700 version, P0-24 should be set. Value 0 is for built-in resistance and value 1 is for external resistance.

Q11: The service life of tank chain?

The bending resistance is 5 million times and the bending radius is 50 mm.

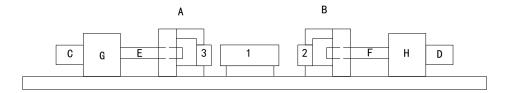
Appendix 6. General debugging steps

- 1. Motor empty shaft, preliminary debugging
- A. Connect the cable correctly. Pay attention to the one-to-one connection of U, V, W and PE terminals, and the phase sequence can not be crossed.
- B. Open-loop test run: The test run mainly checks the power cable and the encoder feedback cable to determine whether the connection is normal. According to the following operation, the motor can normally achieve positive and negative rotation. If the motor shaft shakes or prompts the alarm, it needs to cut off the power supply immediately, and re-check the wiring situation.

		Press DEC	
Long press ENTER	Short press ENTER	 Press INC	

C. jog run: Enter F1-00.

Short press ENTER to enable the motor. In the enabled status, press INC for run forward, press DEC to run reverse. Press STATUS/ESC to exit.


Four status when jog running:

status	Panel display	status	Panel display
Idle		Forward run	
enabled		Reverse run	

- 2. Debug the motor with the machine
- A. Observe the operating direction of the machine head. If it is contrary to the actual need, after the servo OFF, set the parameter P0-05 to 1, and then re-energize to make the change effective.
- B. During the operation, observe the stability and responsiveness of the operation, and adjust the servo control parameters appropriately.

Appendix 7. Application example

Mode 6: Pulse instruction position mode

Equipment introduction:

This is a welder. Workpiece 1, 2, 3 are the object to be operated. 2 and 3 is fixed on B and A individually. A and B can whole move and be pushed by ball screw E and F. The screw pitch is 5mm. C and D is servo motor. G and H is reducer. The deceleration ratio is 40.

It needs to adjust the machine with standard dimension workpiece and find the origin of A and B.

Workpiece 1 lies on the worktable and moves left and right. Its dimension is positive tolerance, cannot shorter than standard workpiece. The process to put the workpiece is random. It requires that the left and right soldering is symmetrical.

A and B move toward 1 with 3 and 2 at the same speed. Whatever the position of 1, 2 or 3 will touch 1 at first and push 1 to another side until 2 and 3 all touch 1. The result is the motor torque will increase. At this time, 1 will at the symmetrical position.

A and B will return to the origin position after soldering is finished.

Analysis

- 1. Make sure the work mode: 6
- 2. It needs to judge whether 2 and 3 touch 1 when finding the symmetrical point first time. The sign is servo output torque will increase. It needs to use torque limit (P3-28, P3-29) and torque limit output signal /CLT.
- 3. As the dimension of workpiece 1 is larger than standard, offset pulse will remain in servo when the symmetrical point is found. /CLR signal can clear the pulse. The servo motor running distance is different from PLC pulse number. If it needs to know the actual distance, servo encoder feedback /A+, /A-, /B+, /B- and AB phase count are needed.
- 4. The machine motion direction of A and B.

Signal and terminal

/COIN positioning finished signal: SO1 /CLT torque up to upper limit output: SO2 /CLR pulse offset clear input: SI1

Encoder feedback signal /A+, /A-, /B+, /B-

Calculate the electronic gear ratio

Step	Explanation	Ball screw			
	Load shaft P				
	P: pitch				
	$1 \text{ rotation} = \frac{P}{\text{Command unit}}$				
1	Confirm the mechanical specification	Ball screw pitch: 5mm			
1		Reduction ratio: 40/1			
2 Confirm the encoder pulse number		131072			
3 Decide the command unit		1 command unit: 0.001mm			
4 Calculate the motion value of load shaft rotate 1 circle		5mm/0.001mm=5000			
	Calculate the electronic gear ratio	B 2 ¹⁷ 16384			
5		$\frac{1}{A} = \frac{1}{5000} = \frac{1}{625}$			
6	Set the user parameters	P0-13=16384 P0-14=625			

Parameter setting

Running mode: P0-01=6

Pulse command state: P0-10=2

Electronic gear ratio: P0-11=0 P0-12=0 P0-13=16384 P0-14=625

Forward torque limit: P3-28=150 Reverse torque limit: P3-29=150 Positioning finished width: P5-00=7

/S-ON: P5-20=0010 /CLR: P5-34=0001 /COIN: P5-38=0001 /CLT: P5-42=0002

Appendix 8. Servo general mode parameters

Appendix 8.1 Basic parameters

Basic parameters			
Parameter	Overview		
P0-03 enable mode	Enable mode selection, generally P0-03 is default, P5-20 sets		
P5-20 servo ON signal /S-ON	n.0010 as enable on after power on		
P0-04 Rigidity grade	Adjust servo gain in auto-tuning fast adjustment mode		
P0-05 Definition of rotation direction	Determine the motor direction, generally 0/1 by default		
P0-25 Power value of discharge	Set the specification parameters of external regeneration resistance		
resistance	to ensure that they are the same as the actual ones		
P0-26 Discharge resistance value			
P3-28 internal forward torque limit	Set servo torque limit source and limit value. The unit of default		
P3-29 internal reverse torque limit	value is the percentage of servo torque		
P3-30 external forward torque limit			
P3-31 external reverse torque limit			
P5-44 power loss brake / BK	The motor with holding brake adopts servo SO terminal to control		
P5-07 servo off delay time	the setting parameters of holding brake		
P5-08 brake command output speed			
P5-09 brake command waiting time			
P5-47 alarm output /ALM	output alarm function setting through the SO terminal, SO2		
	terminal default output is dynamic closing signal.		
P7-00 RS485 Station No	Communication setting related parameters		
P7-01 communication configuration			
P7-02 RS485 communication protocol			

Appendix 8.2 External pulse position mode general parameters

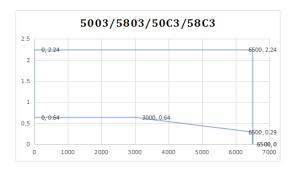
External pul	se position mode general parameters
Parameter	Overview
P0-01 control mode selection	Set to 6: external pulse mode
P0-10 pulse instruction format	Set pulse format
	0-CW/CCW
	1-AB
	2-P+D
P0-11 set motor pulses per revolution *	Setting of command pulse number required for one revolution of
1	motor
P0-12 set motor pulses per revolution *	When P0-11 / P0-12 are all zero, P0-13 / P0-14 takes effect
10000	When P0-11-P0-14 is zero, P0-92~P0-95 is effective
P0-13 electronic gear ratio (numerator)	32-bit gear ratio numerator: P0-92 * 1 + P0-93 * 10000
P0-14 electronic gear ratio	32-bit gear ratio denominator: P0-94 * 1 + P0-95 * 10000
(denominator)	
P0-92~P0-93 32-bit electronic gear ratio	
numerator	
P0-94~P0-95 32-bit electronic gear ratio	
denominator	
P0-09 pulse instruction setting	Each bit can set the command direction and filter time of
	low-speed pulse respectively

Appendix 8.3 Internal position mode general parameters

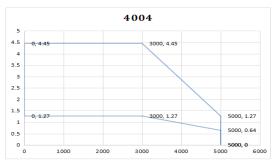
Internal position me	ode general parameters
Parameter	Overview
P0-01 control mode selection	Set to 5: internal position mode
P4-03 internal position setting mode P4-04 number of effective segments P4-10 ~ P4-254 internal section 1 to section 35 position parameter setting	Control mode setting of internal position mode: including step change mode, positioning mode and adjustment time Configuration of pulse displacement, speed, acceleration and deceleration time of each section
P5-35 step change signal /GHGSTP P5-32 suspend the current signal /Inhibit P5-31 skip current segment No. /Z-Clamp	Common terminal function assignment
P4-00 Number of Z-phase signals after leaving limit switch P4-01 speed of collision with proximity switch P4-02 speed of leaving proximity switch P5-28 find reference origin in forward side under position mode /SPD-A P5-29 find reference origin in forward side under position mode /SPD-B	Internal position back to origin setting parameters
F2-09 35 Any setting of segment position	Set the segment no. through communication

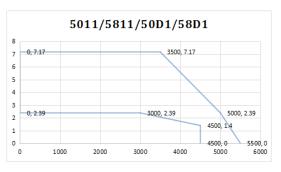
Appendix 8.4 Internal torque control general parameters

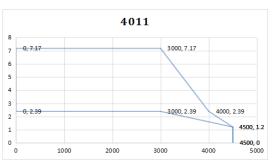
Internal torque control		
Parameter	Overview	
P0-01 control mode selection	Set to 1: internal torque mode	
P3-33 Internal torque command given	The given value is the percentage of rated torque	
P3-16 internal forward speed limit for torque control	Speed limit in torque mode	
P3-17 internal reverse speed limit for torque control		
P3-14 forward maximum speed limit (max speed)		
P3-15 reverse maximum speed limit (max speed)		
P5-27 speed direction switch /SPD-D	Change direction, default is n.0000.	
	If the direction changing is given through SI2	
	terminal, p5-27 can be set to n.0002.	

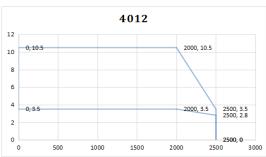

Appendix 8.5 Internal speed control general parameters

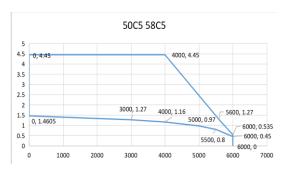
Internal speed control		
Parameter	Overview	
P0-01 control mode selection	Set to 3: internal speed control mode	
P3-05 internal set speed 1	Speed value setting of internal 3-segment speed in rpm	
P3-06 internal set speed 2		
P3-07 internal set speed 3		
P5-28 internal speed selection /SPD-A	The combination of terminals determines the speed of	
P5-29 internal speed selection /SPD-B	corresponding section	
P5-27 internal speed direction selection	Change direction, default is n.0000.	
/SPD-D	If the direction changing is given through SI2 terminal,	
	p5-27 can be set to n.0002.	
P3-09 soft start acceleration time	Set acceleration and deceleration time in ms	
P3-10 soft start deceleration time		


Appendix 8.6 External pulse speed control general parameters

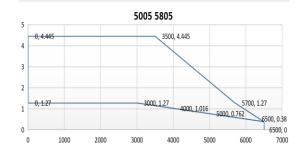

Externa	al pulse speed control
Parameter	Overview
P0-01 control mode selection	Set to 7: external pulse speed mode
P0-10 pulse command format	Set the pulse format
	0-CW/CCW
	1-AB
	2-P+D
P0-15 Command pulse frequency at rated	Determine the linear relationship between the command
speed	pulse frequency and the speed
P0-16 Speed command pulse filtering time	When the command pulse frequency is relatively low,
	setting this parameter properly can reduce the speed
	fluctuation

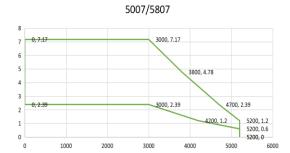

Appendix 9. Torque-speed characteristic curve

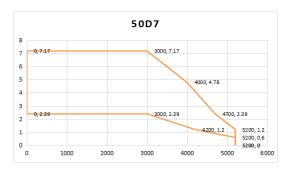












We chat ID

WUXI XINJE ELECTRIC CO., LTD.

No.816, Jianzhu West Road, Binhu District, Wuxi City, Jiangsu Province, China 214072

Tel: (510) 85134136 Fax: (510) 85111290 www.xinje.com